Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Земля


В последнее время стало выясняться, что внутреннее ядро Земли устроено сложнее, чем считалось, но ни одна из новых моделей пока не смогла объяснить странное поведение проходящих через него сейсмических волн. Между тем понимание внутреннего ядра во всей его сложности необходимо для изучения эволюции и сегодняшнего состояния планеты. Рост внутреннего ядра косвенно влияет на движение ядра внешнего, которое производит магнитное поле Земли.

Строение Земли. Иллюстрация Thinkstock.Строение Земли. Иллюстрация Thinkstock.Группа учёных из Великобритании и США полагает, что поведение сейсмических волн объясняется конвекцией, то есть тем же явлением, благодаря которому батарея, стоящая у окна, обогревает всю комнату. Воздух вблизи неё теплеет и становится менее плотным, из-за чего поднимается к потолку и меняется местами с более холодными слоями. Оказавшись рядом с батареей, холодный воздух тоже нагревается, начинает подниматься и т. д. То же самое происходит внутри ядра.

«Медленное остывание Земли заставляет жидкое внешнее ядро затвердевать снизу вверх, откладывая материал с более низкой температурой на границе внутреннего ядра, — поясняет Крис Дэвис из Лидсского университета (Великобритания). — Материал, расположенный в верхней части внутреннего ядра, плотнее того, что располагается ниже. Если плотный материал залегает выше лёгкого, последний хочет подняться, а плотный — опуститься, что делает всю систему неустойчивой». Именно эта нестабильность и приводит к конвекции.

Некоторые исследователи предполагали, что в центре внутреннего ядра жарче, чем по краям, и что изменение температуры от центра к краю тоже способно вызвать конвекцию, так как относительно прохладный материал на краю стремится затонуть.

Но г-н Дэвис и его коллеги утверждают, что конвекция возникает из-за более плотного, а не прохладного материала. Иными словами, дело не в разнице температур, а в разнице химических составов.

Предыдущие штудии показали, что внутреннее ядро может осуществлять перенос тепла с помощью другого уровня проводимости, когда тепло переносится, но материал — нет. Однако это означало бы, что для конвекции просто не оставалось бы тепла. Поэтому многие учёные сомневаются в том, что поведение сейсмических волн можно объяснить конвекцией.

Суть новой работы как раз и заключается в том, что она показывает принципиальную возможность конвекции во внутреннем ядре.

Результаты исследования опубликованы в журнале Geophysical Research Letters.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Геологии
Среда, 16 Июнь 2010 00:00

Спасительная дымка

   Раннюю жизнь на Земле от ультрафиолетовых лучей защищал метан.                                

Раннюю жизнь на Земле  от ультрафиолетовых лучей  защищал метан Раннюю жизнь на Земле от ультрафиолетовых лучей защищал метан Наша планета в юности была вовсе не голубой, как сейчас. Из космоса она, очевидно, была очень похожа на нынешний Титан, второй по размерам спутник нашей Солнечной системы и крупнейший спутник Сатурна. Землю окутывала плотная дымка красноватого оттенка, через которую было трудно что-либо разглядеть; а океан благодаря растворенному в воде железу был зеленого цвета.

Именно такой, пишет журнал Science, была Земля в своей юности. Согласно результатам нового исследования ученых университета Колорадо, несколько миллиардов лет назад ее окружала густая дымка. Эта дымка, как щит, защищала ранние формы жизни от губительного воздействия ультрафиолетового излучения.

Дымка в основном состояла из соединений метана и азота, образовавшихся в результате реакции этих газов со светом. Этот щит не только защищал Землю от ультрафиолета, но и позволял скапливаться таким газам, как аммиак. Это способствовало возникновению парникового эффекта и, возможно, уберегло планету от полного замерзания.

Углеводородные аэрозоли, главный компонент дымки, блокировали ультрафиолетовые лучи, но пропускали к Земле видимый свет.

До этого исследования наиболее распространенной считалась теория, согласно которой атмосфера нашей планеты примерно 3 млрд лет назад состояла из азота с небольшими вкраплениями двуокиси углерода, метана, водорода и водяных паров.

Климатические модели утверждают, что одной двуокиси углерода в атмосфере юной Земли было слишком мало для того, чтобы ее согреть, поэтому в ней должны были присутствовать и другие парниковые газы. Главным и наиболее логичным кандидатом является метан, который могли производить ранние формы жизни.

Считается, что в архейский эон (3,8--2,6 млрд лет назад) на Землю попадало на 20--30% меньше солнечной энергии, чем сейчас. С другой стороны, имеются как геологические, так и биологические свидетельства того, что температура поверхности планеты в те давние времена была такой же высокой или даже еще выше, чем сейчас.

Колорадские ученые воспользовались компьютерами Национального центра атмосферных исследований США для моделирования возникновения дымки над Титаном. Титан, на котором не так давно обнаружили возможность существования примитивных форм жизни, попал под пристальное внимание астрономов в 2004 году, когда к Сатурну подлетела космическая обсерватория «Кассини». Благодаря собранной ею информации стало ясно, что Титан является единственным спутником в нашей Солнечной системе, который обладает и плотной атмосферой, и жидкостью на поверхности.

Ученые из университета Колорадо пришли к выводу, что дымка Земли миллиарды лет назад была похожа на плотную атмосферу современного Титана.

В архее в атмосфере Земли озонового слоя, защищающего на ней все живое, еще не было. Ученые из Колорадо полагают, что в архейском эоне в атмосфере Земли ежегодно появлялось приблизительно 100 млн тонн дымки. Ключевым компонентом этой системы был метан, который не только защищал Землю от ультрафиолета, но и защищал находившиеся под ним атмосферные газы, включая такой сильный парниковый газ, как аммиак. Это и помогло нашей планете не замерзнуть.

Сейчас перед учеными стоит задача -- выяснить, откуда метан появился в таких количествах. Если его не производили ранние формы жизни, то он мог появиться вследствие извержений вулканов.

Новое исследование ученых университета Колорадо, очевидно, вновь вызовет интерес к сенсационному эксперименту Стэнли Миллера и Гарольда Урея почти 60-летней давности, которые соединили в пробирке метан с аммиаком, азотом и водой, пропустили через раствор ток, имитируя действие молнии или сильной ультрафиолетовой радиации, и получили маленькую лужицу аминокислот -- кирпичиков жизни.

Теория о том, что Земля в первые годы своего существования была накрыта газообразным облаком из метана и аммиака, родилась в 60-е годы прошлого века, но со временем была отвергнута. В 70--80 годы считалось, что атмосфера юной планеты напоминала атмосферу Марса и Венеры с их высоким уровнем СО2. Однако и эта теория оказалась несостоятельной. Так как богатая двуокисью углерода атмосфера с большим трудом производила органические молекулы, ученые в попытках объяснения жизни начали исследовать подводные вулканические впадины и астероиды.


Источник: ВРЕМЯ НОВОСТЕЙ


Опубликовано в Новости Метеорологии

Считается, что юную Землю наполняла горячая вода, но два исследования, результаты которых были представлены на конференции Американского геофизического союза, показали, что в действительности на планете было даже холоднее, чем сейчас.

Сурикат на фоне отпечатков дождевых капель, образовавшихся 2,7 млрд лет назад (фото Wlady Altermann / University of Pretoria)Сурикат на фоне отпечатков дождевых капель, образовавшихся 2,7 млрд лет назад (фото Wlady Altermann / University of Pretoria)Учёные занимались парадоксом слабого молодого Солнца. В то время, когда на Земле царил архей (4−2,5 млрд лет назад), наша звезда светила всего лишь на 70% от сегодняшнего уровня. Тем не менее Земля отчего-то не превратилась в гигантский снежок. Вместо этого на ней были обширные океаны жидкой воды, наполненные примитивными микроорганизмами — предками современных микробов, производящих метан и поглощающих серу.

В ходе одного из исследований специалисты проанализировали окаменевшие капли дождя, павшие с небес около 2,7 млрд лет назад, и пришли к выводу, что атмосфера, в которой они сформировались, не слишком отличалась от сегодняшней. Это говорит о том, что парникового эффекта, якобы необходимого для защиты планеты от глобального остывания, не случилось.

Другая группа предложила следующее решение парадокса: молодой планете вовсе не надо было оставаться тёплой, чтобы поддерживать воду в жидком состоянии. Если вы построите модель Земли в виде сферы, даже тусклого Солнца и атмосферы, напоминающей сегодняшнюю, будет достаточно, чтобы в районе экватора существовала вода, хотя и не самая горячая.

С 1960-х годов на основании геологической и палеонтологической летописи учёные полагают, что в архее температура океанов достигала 77 ˚C. В то же время компьютерные модели слабого Солнца и атмосферы, похожей на современную, рассматривали Землю как одномерную линию (а не более реалистичную сферу). У них получалось, что средняя температура планеты держалась ниже нуля.

Отпечатки неоархейского дождя (Фото Som et al, Nature, 2012)Отпечатки неоархейского дождя (Фото Som et al, Nature, 2012)Дабы избавиться от этого противоречия, учёные предположили, что в те времена атмосферу наполняли парниковые газы (например, углекислый). Но вместе с ростом концентрации этих газов увеличивалось и атмосферное давление. Этим обстоятельством и воспользовались астробиолог Санджой Сом из Исследовательского центра НАСА им. Эймса и его коллеги. Во время короткого и лёгкого ливня с ураганом, пронёсшегося над современной Южной Африкой, капли упали в древнюю реку, покрытую одеялом из вулканического пепла. Следы сохранились, поскольку их покрыла тонкая вуаль следующей порции золы.

Для расчёта давления ранней атмосферы исследователи сбрасывали капли с высоты седьмого этажа и измеряли размер ямок, получавшихся в пепле исландского вулкана Эйяфьятлайокудль. Поскольку предельная скорость дождевой капли (равновесная скорость — скорость падения, когда сила сопротивления воздуха равна силе гравитации) зависит от плотности воздуха вокруг неё, учёные смогли посчитать давление воздуха, определив скорость, с которой капли врезались в пепел 2,7 млрд лет назад.

Они заключили, что древнее атмосферное давление превышало сегодняшнее максимум вдвое, то есть в те времена и близко не было того количества парниковых газов, о котором говорили другие исследователи.

Тем временем Эрик Вулф из Колорадского университета (США) и его коллеги на основании трёхмерной компьютерной модели обнаружили, что, даже если взять более реалистичный уровень атмосферного углекислого газа, Земля будет всего лишь такой же холодной, как во времена последнего ледникового периода. То есть даже в этом случае жидкая вода могла существовать.

Учёные также пересмотрели старые геологические свидетельства, которые использовались для расчёта температуры на ранней Земле (например, морские донные отложения), обнаружив, что гипотеза о почти кипящих океанах сомнительна.

Например, отсутствие льда в летописи окаменелостей воспринимается как доказательство того, что Земля была свободной ото льда, тогда как на самом деле это может означать, что мы просто ещё не нашли лёд, говорит г-н Вулф. К тому же геологические данные о высокой температуре в северных широтах добыты на большой глубине, и вполне возможно, что 2,8 млрд лет назад эти породы находились возле экватора.

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Палеонтологии

Через 2,8 млрд лет умирающее Солнце  набухнет и превратится в красного гиганта, который опалит нашу планету уничтожив на ней всю жизнь. Примерно за миллиард лет до этого на Земле останутся только одноклеточные  организмы, дрейфующие в изолированных соленых горячих водных источниках.

Последние жители нашей планеты (изображение Jjguisado/Flickr/Getty)Последние жители нашей планеты (изображение Jjguisado/Flickr/Getty)Это конечно мрачная перспектива, ожидающая нашу планету, но она дает надежду для тех, кто ищет внеземную жизнь. Модель, предсказывающая эти карманы жизни в будущей Земле и намекающая, что обитающая жизнь вокруг других планет  может быть более разнообразной, чем считалось ранее,  дает новую надежду в поисках жизни в самых неожиданных местах.

Используя то, что мы знаем о Земле и Солнце, учитывая увеличение размеров нашего светила и превращение его в красного гиганта, исследователи из Великобритании рассчитали сроки для различных этапов жизни на нашей планете.

Ранее уже публиковалось исследование, моделирующее этот сценарий жизни на Земле, но Джек О’Мэлли-Джеймс из университета Сент-Эндрюс из Великобритании и его коллеги рассмотрели возможность того, что жизнь обитающая в различных экстремальных местах планеты способна просуществовать намного дольше, чем говорилось в предыдущих исследованиях.

Существует множество звезд находящихся на разных этапах эволюции подобных нашему Солнцу, поэтому ученые смотрели на то, как долго может процветать простая и сложная жизнь вокруг звезд различного размера.

О'Мэлли-Джеймс  говорит  - "Обитаемость это не столько набор атрибутов планеты, но еще что-то, что имеет срок своего существования".

Исследователи смоделировали повешение температуры на поверхности Земли на различных широтах, а так же учли долгосрочные изменения в параметрах орбиты планеты. Их модель показывает, что по мере старения Солнца происходит нагрев Земли, и как в связи с этим будут исчезать растения, животные, рыбы, беспозвоночные и остальные живые организмы. Испарятся океаны, и остановится тектоника литосферны плит. Последним пристанищем живых микроорганизмов останутся бассейны горячего рассола расположенные на высоких широтах, закрытых пещерах или глубоко под землей. Микробы, обитающие в этих бассейнах, могут править Землей еще в течение миллиардов лет, прежде чем иссякнут и эти источники.

Применяя эту модель обитаемости к различным звездным системам на разных этапах эволюции можно сказать, что жизнь на планете будет одноклеточной в течение первых 3х миллиардов лет и в конце жизни звезды. Это показывает, что наибольшей вероятностью найти жизнь на других планетах будет нахождение одноклеточных организмов.

“Тем не менее, любое доказательство жизни за пределами нашей планеты было бы большим достижением” говорит О'Мэлли-Джеймс. Сейчас он работает над тем, чтобы определить, какие химические признаки микробной жизни будут на Земле в далекой будущем и сможем ли мы обнаружить подобные знаки на других планетах, которые, в настоящее время считаются безжизненными. “Вместо того, чтобы планета была мертвой – она может находится ближе к концу своего обитаемого цикла”  говорит он.

Эван Монаган из Открытого университета в Милтон Кейнс, Великобритании, считает, что нам следует думать о жизни на планете, как цикл - от простых до сложных и, возможно, обратно к простым. Это поможет в охоте за внеземной жизнью, говорит он. "Если жизнь существует во многих местах, мы должны определить в каком диапазоне могут существовать многоклеточные”.


Источник: NewScientist


Опубликовано в Новости Эволюции

Всего 41 тыс. лет назад стрелка компаса на нашей планете показала бы на юг — как на Марсе сейчас. Учёные из Гельмгольцовской ассоциации германских исследовательских центров (точнее, из входящего в неё Центра наук о Земле) сделали именно такой вывод после изучения проб донных осадков Чёрного моря.

Последняя инверсия магнитного поля Земли была гораздо позже, чем принято думать. (Здесь и ниже иллюстрации Norbert R. Nowaczyk / GFZ.)Последняя инверсия магнитного поля Земли была гораздо позже, чем принято думать. (Здесь и ниже иллюстрации Norbert R. Nowaczyk / GFZ.)Тогда на планете был ледниковый период, и наличное человечество больше увлекалось выживанием, нежели разработкой всяких там компасов. Поэтому до разрыва шаблонов дело так и не дошло.

Но, строго говоря, ещё не поздно. Исследователи под руководством Норберта Новачика и Хельге Арца обнаружили, что скорость смены магнитных полюсов Земли тогда была просто рекордной. Инверсии магнитного поля в истории планеты, безусловно, случались, но никакой закономерности в их смене замечено не было: то десятки миллионов лет ничего, то следуют друг за другом каждые несколько десятков тысячелетий. Однако до этого открытия считалось, что в последний раз магнитные полюса менялись местами 780 тыс. лет назад, а длилось изменение 1 200–10 000 лет. Заметим также, что мнения учёных по этому вопросу расходятся, равно как и намагниченность тогдашних осадочных пород в разных точках планеты.

Но, оказывается, 41 тыс. лет назад всё было не так. «Геометрия поля инвертированной полярности, линии которого указывали в прямо противоположном нынешней конфигурации направлении, существовала всего 440 лет и была связана с магнитным полем, которое по силе составляло четверть нынешнего, — объясняет Норберт Новачик. — Собственно изменение полярности длилось лишь 250 лет. В геологических временных масштабах это очень быстро». И действительно: если в 2009 году скорость движения северного магнитного полюса составила 64 км/год, то за 1 000 лет даже при постоянно изменяющемся направлении движения он может переместиться, скажем, в Антарктиду. Но за 250 лет?!Кроме резкого изменения температуры в Гренландии, никаких катастрофических последствий ни для климата, ни для биоразнообразия ослабление магнитного поля и извержение супервулкана почему-то не имелиКроме резкого изменения температуры в Гренландии, никаких катастрофических последствий ни для климата, ни для биоразнообразия ослабление магнитного поля и извержение супервулкана почему-то не имели

Самое интересное в другом: по всем расчётам выходит, что за эту четверть тысячелетия магнитное поле было в двадцать раз слабее нынешнего. Компьютерной индустрии повезло: развивайся она в ту эпоху, ей было бы суждено навеки остаться ламповой, потому что уровень космической радиации, попадающей на поверхность Земли, страшно усложнил бы работу неэкранированных транзисторных микросхем.

В результате описанных драматических событий пик радиоактивного бериллия-10 в пробах льда того времени не заставил себя ждать. То же, разумеется, относится и к углероду-14.

Кроме того, изучение проб показало, что 39 400 лет назад, то есть близко к смене магнитного поля, произошли иные катаклизмы — скажем, извержения супервулкана в Италии, вынесшие в атмосферу 350 км³ пепла. Разумеется, это вызвало климатические колебания, следы которых отмечают и немецкие учёные. Правда, они имели не слишком глубокое влияние в сравнении с другими факторами, воздействовавшими на погоду в ту эпоху.

Но есть и другие вопросы. Вспомним о гипотезе, утверждающей, что во время смены магнитных полюсов магнитное поле Земли так слабо, что резко выросшая радиация должна серьёзно навредить всему живому и привести к куда более заметным последствиям. Так, утверждалось, что, случись такое в наши дни, человечество испытало бы глобальную катастрофу, а может, и кануло бы.

И наконец. В качестве общего места часто утверждается, что магнитосфера обеспечивает защиту, без которой жизнь на Земле не могла бы существовать. Мол, Марс, магнитное поле которого очень мало, потерял значительную часть своих бывших океанов и атмосферы частично из-за прямого воздействия солнечного ветра, уносившего их в космос (правда, с Луной, Меркурием и многими другими было почему-то наоборот).

Как всё это совместить с 250-летним двадцатикратным падением уровня магнитного поля, которое не привело ни к каким массовым вымираниям видов? Более того, обычно на магнитном экваторе напряжённость магнитного поля планеты вдвое меньше, чем на полюсах, и в 1,5 раза — чем «в среднем по больнице». Где же следы гибели видов в его районе в условиях тридцатикратно ослабленного поля? Ведь, среди прочего, здесь проживали десятки поколений Homo Sapiens — существ, считающихся весьма уязвимыми к радиации…

Соответствующее исследование опубликовано в журнале Earth and Planetary Science Letters.

 


 

Источник: КОМПЬЮЛЕНТА


 

 

 

Опубликовано в Новости Геологии

Развитие средств прямого обнаружения экзопланет идёт полным ходом и ставит перед исследователями вопрос: как полученные изображения экзопланет и экзолун можно использовать для определения их обитаемости? Астрономы из Германии и США, проведя моделирование различных вариантов такой «окраски», пришли к выводу, что по ней действительно можно судить о наличии и даже до некоторой степени о составе биосферы.

Бóльшая часть доминирующих на Земле форм жизни демонстрируют резкий скачок альбедо в красной и инфракрасной частях спектра. (Графики Siddharth Hegde, Lisa Kaltenegger.)Бóльшая часть доминирующих на Земле форм жизни демонстрируют резкий скачок альбедо в красной и инфракрасной частях спектра. (Графики Siddharth Hegde, Lisa Kaltenegger.)Как выглядит из космоса Земля, известно: в 1990 году по просьбе Карла Сагана «Вояджер-1» сфотографировал планету с удаления в 6 млрд км. Итог был предсказуем: 0,12 пиксела, или «бледная голубая точка» (Pale Blue Dot).

Сиддхарт Хедж из Института астрономии Общества Макса Планка (Германия) и Лиза Калтенеггер из Гарвард-Смитсоновского центра астрофизики (США) отмечают: такой цвет на 100% обусловлен обитаемостью Земли, в основном водой, покрывающей 70% её поверхности. Кроме того, значительный вклад дают растительность (которой покрыто 60% твёрдой поверхности), снег, пустыни и пр.

Однако так планета выглядела не всегда, и очень вероятно, что такого цвета нет у многих потенциально обитаемых планет за пределами нашей Солнечной системы.Даже на сегодняшней Земле доминирующие цвета фотосинтезирующих организмов не обязательно зелёные — как показывают эти бактерии-галофилы из австралийских солёных озёр. (Фото Cheetham Salt Limited.)Даже на сегодняшней Земле доминирующие цвета фотосинтезирующих организмов не обязательно зелёные — как показывают эти бактерии-галофилы из австралийских солёных озёр. (Фото Cheetham Salt Limited.)

Более того, гипотетический наблюдатель (с аппаратурой соответствующего уровня) из другой звёздной системы разглядит не только этот (голубой) цвет. Давно известно, что при суточном вращении Земли поглощение красного света будет периодически резко падать («красный край») — по мере того как от океанских просторов инопланетный телескоп будет переходить на покрытые растительностью (отражающей свет в красном диапазоне спектра) пространства суши. Альбедо растений в среднем вырастет с 680 до 730 нм, с 5 до 50%, что нельзя не заметить. Однако, подчёркивают учёные, жизнь предоставит индикаторы такого рода лишь при соблюдении ряда условий. Вокруг звёзд отличного от Солнца спектрального класса возможен «синий край», когда (во избежание перегрева более коротковолновым излучением) альбедо растений будет резко возрастать не в красной и инфракрасной частях спектра, а в ультрафиолетовой и фиолетовой.

С другой стороны, отмечают исследователи, анализ цвета способен помочь при выявлении менее развитой жизни — например, экстремофильной. Лишайники, биоплёнки, цианобактериальные маты эффективно обнаруживаются по специфическим цветам, и их доминирование, несомненно, придаст поверхности планеты свои оттенки.

В целом авторы работы при выборе объектов рекомендуют отдавать предпочтение планетам голубой части спектра перед красноватыми типа Марса. Среди прочего такой цвет сигнализирует о значительном присутствии жидкой воды, что повышает шансы на обнаружение жизни.

В то же время остаются варианты, не поддающиеся обнаружению названным способом. Почвенные экстремофилы для защиты от ультрафиолета и иных угроз могут вовсе исчезнуть с поверхности, и тогда их влияние на цвет экзопланеты будет минимально. Очень сложно также наблюдать планеты с серьёзной облачностью…

И ещё одно. Современный научный мир не вполне твёрдо уверен в исключительности нынешних оттенков земной тверди. Ведь в иные геологические эпохи окрас мог отличаться от сегодняшнего, не так ли? Скажем, гипотеза «пурпурной Земли» предполагает, что в период возникновения жизни планета вполне могла выглядеть не зелёной, как сегодня, а красно-фиолетовой. В процессе фотосинтеза древние автотрофы могли пользоваться не хлорофиллом, а совсем другим веществом — например, бактериохлорофиллом. Его и сегодня применяет группа фотосинтезирующих протеобактерий, обитающих в воде. Они содержат красные пигменты: бактериохлорофиллы a и b, а также каротиноиды, придающие им пурпурный цвет. Такие пигменты позволяют эффективно использовать (поглощать) свет зелёной части спектра. Так вот, если верить «пурпурной Земле», кроме бактериохлорофилла, первые автотрофы могли использовать для фотосинтеза альдегид витамина А, что также должно было придавать им специфический красный цвет.

Кстати, предполагается, что зелёный цвет хлорофилловые организмы приобрели случайно — в конкуренции с пурпурными. После же вытеснения тех, первичных автотрофов зелёный закрепился как общая черта фотосинтезирующих организмов. Словом, если гипотеза верна, то зелёный цвет даже в условиях жизни под солнцеподобной звездой случаен, а потому не может рассматриваться как достоверное свидетельство высокоразвитой жизни.

С препринтом соответствующего исследования можно ознакомиться здесь.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Астрономии

Земная кора неоднородна: она подразделяется на более лёгкую континентальную и плотную океаническую. Первая толще (30–40 км) как раз за счёт своей лёгкости; именно это позволяет ей настолько возвышаться, плавая в мантии.

Иллюстрация авторов исследованияПо общепринятым представлениям, тектонические плиты сталкиваются, океаническая кора погружается в мантию, где на определённой глубине частично плавится, после чего расплавленная порода снова возносится на поверхность. Так формируются континенты.

Состав континентальной коры соответствует таковому коры океанической, которая расплавилась настолько, что от неё осталось 10–30%. К сожалению, концентрации основных химических компонентов в повторно затвердевшей породе не позволяют судить о том, на какой глубине происходило смешивание. Необходимо знать, каким был состав остальных 70–90%.

Дабы нащупать подходы к решению этой проблемы, Торстен Нагель из Боннского университета и Карстен Мюнкер из Кёльнского университета (оба — ФРГ) проанализировали старейшие (3,8 млрд лет) образцы континентальной коры, которые находятся в западной части Гренландии.

Прежде чем магма отделится от коренной подстилающей породы, полужидкая порода и остаток твёрдых минералов активно обмениваются микропримесями. «У каждого минерала — свой способ отделения при плавлении рассеянных элементов, — поясняет соавтор Элис Хоффманн из Боннского университета. — Иными словами, концентрация микроэлементов в расплаве указывает на состав остаточной коренной породы».

Ну а концентрация микропримесей в старейшей континентальной породе должна была позволить учёным реконструировать первоначальную коренную породу, чтобы выяснить, на какой глубине образовалась континентальная кора.

Исследователи провели компьютерное моделирование состава коренных и расплавленных пород, которые могли возникнуть в результате частичного плавления океанической коры на различной глубине и при различной температуре. Результаты сравнили с наличной концентрацией микропримесей в старейших континентальных породах.

Выяснилось, что кора первых континентов, скорее всего, сформировалась на глубине 30–40 км. И это означает, что в архее океаническая кора могла в некотором смысле «сочиться» континентальными породами, поскольку 4 млрд лет назад Земля была ещё довольно горяча.

Выходит, первые континенты возникали вовсе не в зонах субдукции (кстати, есть сомнения, что эти зоны в то время существовали).

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Геологии
Страница 2 из 2

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Для неандертальцев, вероятно, было характерно патрилокальное поселение

25-12-2010 Просмотров:11093 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Для неандертальцев, вероятно, было характерно патрилокальное поселение

Учёные из Испании и Дании обнаружили свидетельства того, что для неандертальцев была характерна патрилокальность — норма поселения, при которой молодые живут рядом с отцом «мужа». Работа в пещере Sidrón (фото Carles...

Tyrannosaurus rex бегал быстрее всех

16-11-2010 Просмотров:10011 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Tyrannosaurus rex бегал быстрее всех

Tyrannosaurus rex некоторыми палеонтологами считается всего лишь падальщиком, который был не в состоянии угнаться за здоровыми и быстрыми жертвами. А вот аспирант из Университета Альберты (Канада) Скотт Персонс уверен, что...

55 млн лет назад по Антарктике бродили табуны копытных

10-02-2015 Просмотров:7949 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

55 млн лет назад по Антарктике бродили табуны копытных

Палеонтологи обнаружили древнейшие останки антарктических млекопитающих. Они принадлежат копытным животным, которые перебрались в Антарктику из Южной Америки через несколько миллионов лет после вымирания динозавров. ЛитоптернОб этом говорится в статье аргентинских ученых, опубликованной в...

Распад суперконтинента 116 млн лет назад заморозил Землю

21-06-2013 Просмотров:10023 Новости Метеорологии Антоненко Андрей - avatar Антоненко Андрей

Распад суперконтинента 116 млн лет назад заморозил Землю

Ученые выяснили, что 116 млн лет назад из-за распада Гондваны температура воды в океане упала на несколько градусов. Это привело к вымиранию целого ряда планктонных организмов. Земля мелового периодаРезультаты исследования, проведенного...

Палеоэпидемиологи поставили диагноз динозаврам

17-05-2013 Просмотров:10314 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеоэпидемиологи поставили диагноз динозаврам

Чем болели динозавры? Совместное исследование канадских и аргентинских палеонтологов рассказывает о проблемах со здоровьем, найденных у крупных южноамериканских хищников мелового периода Mapusaurus. Мапаузавры (Mapusaurus) Палеоэпидемиология относится к числу новых научных дисциплин и...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.