Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Оказывается, нет необходимости в использовании высокотехнологичных хитроумных изобретений или просто физической силы, чтобы защитить плантации от набегов африканских слонов.

Услышав ненавистное жужжание, слоны задают стрекача! (Фото Люси Кинг.)Услышав ненавистное жужжание, слоны задают стрекача! (Фото Люси Кинг.)22 ноября биолог Люси Кинг из Оксфордского университета (Великобритания) получила в норвежском Бергене награду ЮНЕП (Программа ООН по окружающей среде) за разработку «противослонового» ограждения: проволочная изгородь соединена с пчелиным ульем, и, когда слон цепляет ограду, насекомые начинают жужжать.

Африканский слон — самое крупное сухопутное животное на планете, весящее до семи тонн. Однако исполин боится пчёл и, едва заслышав их жужжание, обращается в бегство. На первый взгляд, слону нечего бояться, ведь шкура у него очень толстая. Но хитрые пчёлы знают, куда бить: они жалят великана в чувствительные места вокруг глаз и внутри хобота.

Тривиально-гениальное изобретение Люси Кинг уже используется в нескольких кенийских деревнях. И, о чудо, оно помогает: местные жители наконец-то могут не опасаться за свои плантации, прежде подвергавшиеся опустошительным набегам слонов.

Исполнительный директор ЮНЕП Ахим Штайнер отметил, что исследование, проведённое г-жой Кинг, демонстрирует, сколь эффективна работа с природой, а не против неё. Природа может предоставить человеку множество способов решения проблем, с которыми сталкиваются и люди, и страны.


Источник:  КОМПЬЮЛЕНТА

Некоторым рыбам коралловых рифов достаточно два поколения, чтобы привыкнуть к повышению температуры воды на три градуса. Именно на столько, по мнению учёных, нагреется Мировой океан через сто лет.

News18a1a1Помацентровые рыбы оказались более устойчивыми к глобальному потеплению, чем от них ожидали. (Фото antoinette marie.)Коралловые рифы считаются одними из самых сложных и чувствительных к глобальному потеплению экосистем. Многие экологические исследования, посвященные анализу последствий потепления, выполняются на флоре и фауне коралловых рифов. Обычно результаты таких работ неутешительны. Однако на этот раз обитатели коралловых рифов сумели удивить экологов: по словам учёных из Университета Джеймса Кука (Австралия), некоторые рыбы уже спустя одно поколение привыкают к повышенной температуре воды.

Исследователи проверяли, как скажется на самочувствии помацентровых рыб повышение температуры на 1,5–3 ˚C. По действующей модели глобального потепления, если человек не снизит выбросы парниковых газов в атмосферу, то к 2050 году температура океана поднимется на 1,5 градуса, а к 2100-му — на 3. Повышение температуры затрудняет дыхание рыб, они получают меньше кислорода и, соответственно, хуже двигаются и уворачиваются от хищников.

Поначалу исследователи и впрямь наблюдали, что рыбам в нагретой воде плохо. Однако уже второе поколение, выросшее с новых условиях, было полностью приспособлено к возросшей температуре и никаких проблем с кислородом, по-видимому, уже не испытывало. Результаты эксперимента исследователи опубликовали в журнале Nature Climate Change.

Что именно произошло с рыбами, экологи сказать затрудняются. В любом случае дарвиновский естественный отбор тут ни при чём: два поколение — слишком малый срок, чтобы он успел дать какие-то результаты. Однако, как предупреждают сами исследователи, их открытие не стоит переоценивать. Всё, что мы можем сказать, это что некоторые рыбы сами по себе вполне способны справиться с глобальным потеплением. Однако все живые организмы встроены в системы сообществ и зависят друг от друга. Если, к примеру, планктон, которым питаются рыбы, окажется более чувствителен к изменению температуры, то тут уж никакая термоустойчивость рыбам не поможет. Кроме того, исследователи отмечают, что второе поколение рыб оказалось меньше по размерам, чем их родители, так что, возможно, за способность переносить повышение температуры рыбам всё же приходится чем-то платить.

Тем не менее такая пластичность некоторых видов по отношению к глобальному потеплению может дать человеку некую отсрочку — если, конечно, он захочет ею воспользоваться и предпринять какие-то меры против грядущей экологической катастрофы.


Источник:  КОМПЬЮЛЕНТА


 

Воскресенье, 11 Декабрь 2011 00:00

Откуда у страуса пенис

Обладателями мужского полового органа первоначально были все птицы, но потом большинство пернатых от него отказались — за исключением страусов, уток и некоторых других видов.

News18a2a1Африканские страусы — счастливые обладатели мужского полового органа, доставшегося им в наследство от рептилий (фото tbd1)Как известно, у большинства птиц самцы лишены специального полового органа, и во время спаривания происходит простое совмещение отверстий клоак самца и самки; сперматозоиды попадают в половые пути самки через отверстие для испражнений. Однако у некоторых видов птиц пенис всё же есть, и среди немногих счастливцев — самцы африканских страусов, эму, нанду, киви, гусеобразных и некоторых других.

Откуда этот орган взялся у таких далёких групп, как бескилевые птицы, к которым относят страусов, киви, эму и прочих, и водоплавающие гусеобразные? На удивление, этот раздел птичьей анатомии изучен до сих пор до крайности плохо. Первые сообщения о том, что страусы спариваются посредством эрегированного пениса, появились аж в 1836 году, но только в 1923-м учёные выяснили, что этот орган у птиц насыщается лимфой, а не кровью.

Из-за этого орнитологи посчитали, что пенис у птиц возник независимо от рептилий и млекопитающих, у которых он становится твёрдым из-за притока крови. Кроме того, учёные хорошо изучили половую систему гусеобразных с их длиннейшими мужскими половыми органами, которые совсем не походят на пенисы зверей. Однако, как утверждают зоологи из Йельского университета (США), строение мужского полового органа у птиц как нельзя лучше свидетельствует в пользу его происхождения от рептильего аналога.

Учёные пристальнейшим образом рассмотрели строение пениса африканского страуса, эму и нанду и пришли к выводу, что по своему анатомическому строению он весьма близок к половому органу рептилий. Ткани, заполняемый лимфой, имеют ту же плотность, строение и, очевидно, происхождение, что и пещеристые тела «обычного» мужского полового органа. То есть, скорее всего, пенис был у общего рептильного предка птиц, а потом большинство пернатых по каким-то причинам от него отказались. Результаты исследований учёные опубликовали в Journal of Zoology.

Единое происхождение могло бы объяснить тот факт, что пенис есть у довольно далёких друг от друга групп птиц. Что же до уток, то у них форма органа, скорее всего, является позднейшей адаптацией, возникшей в результате ожесточённой «войны полов». У самок гусеобразных в ходе эволюции развились сложнейшие половые пути, позволяющие им контролировать судьбу спермы самца даже во время и после спаривания; в свою очередь у самцов в ответ на это появился сложноустроенный и чрезвычайно длинный половой орган.

Мужской половой орган у бескилевых птиц устроен гораздо более привычным способом. В связи с этим учёные обращают внимание на различие в половом поведении у нанду и эму. Нанду полигамны, и их мужской половой орган выглядит довольно солидно, в то время как эму образуют постоянные пары и их самцы обладают куда меньшим пенисом. Дарвин обосновывал появление пениса у млекопитающих тем, что его обладатели могли доставить самке больше удовольствия и тем самым имели преимущество в половом отборе. Личная жизнь нанду и эму (да чего уж там, и людей тоже) вполне укладывается в эту теорию. Однако в свете того, что большинство птиц впоследствии отказались от пениса, биологам-эволюционистам стоит подумать, а так ли уж необходим этот замечательный орган для репродуктивного успеха...


Источник:  КОМПЬЮЛЕНТА


 

В знаменитом геологическом формировании Бёрджес-Шейл, что в канадской части Скалистых гор, обнаружено странное существо, жившее около 505 млн лет назад и имевшее невиданную доселе систему подачи пищи.

Siphusauctum gregarium (здесь и ниже представлены изображения авторов работы)Siphusauctum gregarium (здесь и ниже представлены изображения авторов работы)Животное обладало чашевидным образованием, в котором помещались пресловутая система и внутренние органы. Оно напоминало бутон тюльпана и находилось на вершине «стебля», нижняя часть которого завершалась дисковидным наростом, прикреплённым к морскому дну. Общая длина существа, окрещённого Siphusauctum gregarium, составляла 20 см.Siphusauctum gregarium (здесь и ниже представлены изображения авторов работы)

Кембрийское создание промышляло фильтрацией, всасывая воду сквозь крошечные отверстия в «чашечке».

Siphusauctum gregarium (здесь и ниже представлены изображения авторов работы)Ведущий автор описания Лорна О'Брайен из Университета Торонто (Канада) отмечает, что многие диковинки, найденные в Бёрджесс-Шейл, удалось связать с существующими ныне группами организмов, а для Siphusauctum подобрать потомка или родственника, по-видимому, невозможно.

Представители новоиспечённого вида росли вместе, составляя нечто вроде небольших садов. Некоторые фрагменты пород содержат останки более чем 65 отдельных существ. В общей сложности с 1983 года исследователи обнаружили свыше 1 100 образцов. Это место было названо ими полями тюльпанов.

Результаты исследования опубликованы в веб-журнале PLoS ONE.


Источник:  КОМПЬЮЛЕНТА

Двигаясь с навозным шаром, скарабеи придерживаются курса, который позволяет им максимально быстро удалиться от навозной кучи. Курс движения жуки прокладывают «на глаз» и, чтобы подтвердить его правильность, время от времени «проводят рекогносцировку» с вершины собственного навозного шара.

Скарабей за работой (фото ruslou)Скарабей за работой (фото ruslou)Когда жук-скарабей находит навозную кучу, он отщипывает от неё кусочек, формирует из него шарик и катит его прочь, чтобы спрятать в укромном месте. Удаляясь от навозной кучи, жук придерживается исключительно прямого курса; это особенно удивительно, если учесть, что навозный шарик насекомое катит задними лапами, находясь в положении вниз головой. Жуку важно как можно скорее удалиться от навозной кучи, так как вблизи неё можно столкнуться с сородичами, которые предпочтут отобрать чужую «добычу», а не скатывать собственный шарик.

Как навознику удаётся при этом не сбиваться с прямого пути? Считается, что в его распоряжении находится множество «компасов»: жук может ориентироваться по солнцу, по луне, по плоскости поляризованного света, по магнитному полю Земли, наконец, по каким-то деталям ландшафта. Исследователи из Лундского университета (Швеция) и Университета Витватерсранда (ЮАР) сумели выяснить, как жук, катящий навозный шар, сверяется с выбранным курсом.

Существует давно известная особенность поведения скарабеев, когда они забираются на шар и крутятся вокруг своей оси. Древние египтяне считали, что таким образом жуки приветствуют солнце. Впоследствии энтомологи выяснили, что чаще всего жук выполняет этот странный танец ещё на навозной куче, перед тем как удалиться с шариком прочь.

Авторы работы предположили, что цель этого странного танца заключается в прокладывании курса, а периодические остановки в пути — чтобы потанцевать — нужны для подтверждения правильности выбранного направления. В статье, опубликованной в сетевом журнале PLoS ONE, энтомологи описывают простой, но элегантный эксперимент, который позволил им подтвердить эту гипотезу. Скарабей катил шарик по специальному жёлобу, и в какой-то момент учёные поворачивали этот жёлоб так, чтобы направление движения жука менялось на противоположное. Скарабей останавливался, залезал на шарик, крутился на месте, затем слезал и... начинал двигаться в противоположном направлении!

Тот же ритуал жуки выполняли, если на время утрачивали контроль над шариком или сталкивались с препятствием. Во всех случаях им требовалось подтвердить курс, чтобы ненароком не вернуться к навозной куче и не столкнуться с конкурентами.


Источник:  КОМПЬЮЛЕНТА


 

Воскресенье, 22 Январь 2012 00:00

Как сипухам удаётся бесшумно летать

Сипухи могут позволить себе махать крыльями медленнее и реже, чем другие птицы: особое устройство крыла обеспечивает аэродинамический эффект, который удерживает их в воздухе.

Сипуха в полёте (фото WiltshireYan)Сипуха в полёте (фото WiltshireYan)Совы — ночные охотники, поэтому, кроме огромных глаз и острого зрения, у них ещё и невероятно чувствительный слух. Порой, чтобы обнаружить мышь-полёвку, шуршащую под снегом, совам приходится ориентироваться только по шуму, который производит добыча. Очевидно, что собственный шум должен быть сведён к минимуму; свист крыльев может не только вспугнуть добычу, но и помешать точно «прицелиться».

Поэтому совы летают практически бесшумно. А учёные до сих пор исследуют приспособления, которые обеспечивают такой полёт.

По мнению Томаса Бахманна из Дармштадского технологического университета(Германия), большую роль в этом играет аэродинамика совиных крыльев — во всяком случае если говорить о совах-сипухах. Сипухи машут крыльями довольно редко и медленно по сравнению с другими птицами, однако в воздухе как-то держатся и на землю не падают. Медленные и неторопливые взмахи обеспечивают им бесшумный полёт. Г-н Бахманн с коллегами тщательным образом изучили оперение и мускулатуру крыла сипухи с помощью медицинского 3D-сканера.

Главной особенностью крыла этой совы, по словам исследователя, является его сильная кривизна, решённая с инженерной точки зрения довольно своеобразно. Если не вдаваться в детали, то можно сказать, что сипуха эффективно использует тот же принцип, который позволяет и самолётам держаться в воздухе. Скорость течения воздуха на верхней поверхности крыла значительно больше, чем под нижней, что создаёт разницу давлений: под крыло воздух давит сильнее, чем на его верхнюю поверхность. В итоге рождается присасывающий эффект, который позволяет сипухе держаться в воздухе, не особо сильно молотя крыльями.

Результат своих исследований Томас Бахманн доложил на ежегодном съезде Общества сравнительной и интегративной биологии.

У сов есть и другие приспособления, которые подавляют шум. Маховые перья по краям имеют особую опушку, которая сглаживает турбулентность воздушных потоков — а значит, снижает шум. Кроме того, у сов снижена сила трения между отдельными перьями. Наконец, перьевой покров по всему телу у них более плотный, и эта перьевая подушка тоже работает как звукопоглотитель.

Исследователи намерены продолжить изучение аэродинамики сов: кто знает, может, эти птицы подскажут несколько остроумных идей конструкторам летательных аппаратов?..


Источник:  КОМПЬЮЛЕНТА


 

Зоологи из Университета Ренна (Франция) обнаружили, что дельфины могут запоминать звуки и повторять их спустя довольно продолжительное время.

Не исключено, что дельфины давно заговорили бы с нами на нашем языке, если бы их голосовой аппарат позволил им это. (Фото Sheba_Also.)Не исключено, что дельфины давно заговорили бы с нами на нашем языке, если бы их голосовой аппарат позволил им это. (Фото Sheba_Also.)Группа учёных под руководством Мартины Хаусбергер записывала вокальные упражнения этих животных в одном из дельфинариев. В какой-то момент исследователям пришла в голову мысль оставить микрофон наедине с дельфинами на ночь. Расшифровывая звукозапись ночных бесед, зоологи обнаружили серию необычных звуков.

Способность дельфинов имитировать звуки по мере своих способностей известна давно. Поэтому учёные, тщательно проанализировав дневное звуковое окружение животных, пришли к выводу, что они повторяют... переклички горбатых китов. А услышали они их из саундтрека, который используется в дельфинарии во время дневных выступлений. В звукозаписи, кроме криков чаек, посвиста самих дельфинов и других океанических звуков, были также позывные горбатых китов.

Дельфины, за которыми наблюдали учёные, всю свою жизнь содержались в неволе, поэтому настоящих китов слышать не могли. Тем не менее акустический анализ показал высокое сходство необычной дельфиньей фразы и сигнала горбатого кита. В другом эксперименте учёные предложили 20 добровольцам вслепую сравнить «песни» горбатых китов, позывные дельфинов и передразнивание китов дельфинами. В 76% случаев дельфинам удавалось обмануть слушателя, принимавшего имитацию за собственный сигнал кита.

Но любопытней всего не то, что дельфины выучивают чужие голоса: об этом зоологи осведомлены давно. До сих пор считалось, что дельфин может повторить звук непосредственно после того, как он его услышит. Но животные из дельфинария днём, во время представлений, по-китовьи не разговаривали. Складывалось впечатление, что дельфины ждали наступления ночи, чтобы попрактиковаться в «иностранном языке».

Свои результаты учёные представили в журнале Frontiers in Comparative Psychology. В дальнейшем они хотят выяснить, почему дельфины ждут ночи для своих необычных вокальных упражнений. Не исключено, что у этих животных, как у и человека, сон играет ключевую роль в консолидации памяти: то, что было увидено-услышано за день, обрабатывается и записывается в долговременную память во время сна. Если это так, то можно будет сделать любопытные выводы, касающиеся эволюции нервной системы у млекопитающих.


Источник:  КОМПЬЮЛЕНТА


 

Чтобы поддерживать размножение в условиях фосфорного голодания, бактериофаги морских бактерий приходят в хозяйские клетки с набором генов, который помогает хозяевам более эффективно «выхватывать» из среды фосфор.

Бактериофаги, специализирующиеся на морских бактериях Prochlorococcus (фото авторов исследования)Бактериофаги, специализирующиеся на морских бактериях Prochlorococcus (фото авторов исследования)Исследователи из Массачусетского технологического института (США) обнаружили, что некоторые вирусы-бактериофаги приходят к своим жертвам с чем-то вроде генетического троянского коня: они приносят заражаемым бактериям гены, которые должны облегчать им жизнь в условиях стресса. Учёные работали с океаническими бактериями Prochlorococcus и Synechococcus, которые производят шестую часть кислорода на планете. Бактерии рода Prochlorococcus в диаметре не превышают одного микрона, а их плотность достигает 100 миллионов клеток на литр воды. Synechococcus чуть крупнее и не столь многочисленны. Соответственно, вирусы, поражающие эти бактерии, относятся к самым распространённым среди себе подобных.

Жизнь в океане полна превратностей, в том числе для микроорганизмов. Часто случается, что бактерии заносит в воды, бедные фосфором. А он критически необходим для жизнедеятельности: без фосфорных соединений невозможно синтезировать нуклеиновые кислоты, то есть размножаться. На такие случаи у бактерий есть специальная генетическая система, чувствующая, когда фосфора начинает не хватать, и активирующая другие гены, которые кодируют связывающие фосфор белки. Эти дополнительные белки позволяют бактериям наловить больше фосфора и пережить кризис.

Но, как оказалось, у вирусов тоже есть такие гены для ловли фосфора. Размножение вируса требует изрядных фосфорных запасов для штамповки вирусной ДНК. Исследователи заметили, что, когда бактериофаг заражает бактерию в условиях недостатка фосфора, в вирусном геноме включаются гены белков, отвечающих за «ловлю» фосфорных соединений.

Оказалось, что вирусные белки управляются теми же генами, что и бактериальные. То есть когда бактерия чувствует фосфорный стресс, она включит как свою, так и вирусную систему по добыче дополнительного фосфора. Основная его масса пойдёт на нужды вируса. Разумеется, самой бактерии может что-то перепасть от усилившегося фосфорного потока, но впрок ей это не пойдёт: через 10 часов цикл размножения вируса закончится, и бактериальную клетку разорвёт под напором выходящих наружу вирусных частиц.

В статье, опубликованной в журнале Current Biology, авторы пишут, что далеко не все бактериофаги, паразитирующие на Prochlorococcus и Synechococcus, обладают этими генами, а только те, что живут в атлантических популяциях бактерий. К примеру, тихоокеанские Prochlorococcus и Synechococcus не сталкиваются с недостатком фосфора, а потому соответствующей системы у них нет. А вот атлантические вирусы когда-то давно сумели скопировать гены хозяев, создавших себе молекулярный механизм на случай фосфорного голодания; в результате вирусы могут размножаться, не обращая внимания на изменения в среде: удвоенный поток фосфора позволяет им синтезировать столько ДНК, сколько нужно.

Столь тонкое приспособление вируса под нужды хозяина исследователи видят впервые. Впрочем, по их словам, бóльшая часть сведений о взаимоотношениях бактерий и фагов пришла к нам из биомедицинских исследований. А жизнь в человеческом организме и биологической лаборатории всё-таки сильно отличается от того, что происходит в Мировом океане. Поэтому не исключено, что это не единственный трюк, с помощью которого «дикорастущие» вирусы облегчают себе жизнь.


Источник: КОМПЬЮЛЕНТА


 

Воскресенье, 29 Январь 2012 00:00

Как мутации формируют признак

Формирование признака определяется по меньшей мере двумя силами — взаимовлиянием генов, из-за чего необходимые мутации концентрируются в строго определённой группе генов, и коэволюцией организмов, когда от «воли» одного зависит, сколько мутаций в геном получит другой.

News19a6a1Бактериофаг лямбда (фото CNRI)Сколько генов составляет признак? Вопрос, не уступающий по сложности средневековому «Сколько демонов уместится на кончике иглы?». Впрочем, гены и признаки имеют большее отношение к нашей повседневной жизни, чем средневековые эзотерические задачи. Достижения молекулярной биологии и генетики ясно дали понять, что ген не всегда тождествен признаку, как мы привыкли его понимать. Например, цвет глаз — это типичный признак, но цвет глаз может зависеть от работы нескольких генов, часть из которых производит ферменты для синтеза соответствующего пигмента, а часть управляет генами ферментов-исполнителей.

Соответствие между генами и признаками интересует биологов по ряду причин. С одной стороны, это причины чисто практического характера: когда мы видим какой-то признак наследственной болезни, необходимо знать, сколько и какие гены за него отвечают. С другой стороны, есть более фундаментальный вопрос — понять, как происходит формирование признаков в эволюции. Решая задачи, которые ставит пред ним среда, организм может пойти по одному из двух путей — либо совершенствовать, настраивать, подтягивать уже имеющиеся признаки, либо сделать, что называется, ход конём и сформировать новый признак. В таком случае вопрос несколько изменяется и выглядит как «Сколько мутаций формируют признак?».

Две статьи, вышедшие одновременно в журнале Science, пытаются разгадать силы, отвечающие за возникновение новых признаков. В первой исследователи из Мичиганского университета (США) рассказывают, как они пытались заставить фаг лямбда найти новый способ проникать в бактериальную клетку. Этот вирус поражает кишечную палочку, попадая в неё с помощью особого рецептора на поверхности клеточной стенки, называемого LamB. Исследователи сделали так, что бактерия перестала синтезировать этот рецептор, и расселили вирус по 96 колониям таких модифицированных бактерий. Их интересовало, как и за какое время вирус сумеет преодолеть возникшую трудность и найдёт новый способ проникнуть в клетку. Действительно, в 25% случаев паразит нашёл обходной путь в виде другого поверхностного бактериального белка, OmpF. За 12 дней в вирусном белке J возникли четыре мутации: обычно J-белок нужен для посадки на LamB-рецептор, но будучи вооружён четырьмя мутациями, он становится способен связывать OmpF-рецептор.Кишечные палочки в процессе конъюгации (фото Eye of Science)Кишечные палочки в процессе конъюгации (фото Eye of Science)

Однако сама бактерия не остаётся в стороне. Оказалось, что у неё может возникать мутация, изменяющая трансмембранный канал, который вообще закрывает вирусу путь в клетку. В этом случае мутации в вирусном белке в буквальном смысле останавливаются за шаг до решения задачи: получив три мутации из четырёх, вирус как бы понимает, что условия изменились, и перестаёт трансформироваться. Очевидно, формирование признака тут жёстко подчинено коэволюции двух видов, которую можно сравнить с парным танцем: если бактерия делает шаг, вирус совершает четыре, но если бактерия делает ещё один шаг, то вирус отвечает тремя, после чего отступает.

В случае с бактериофагом для нового признака (способности проникать в клетку) хватило всего четырёх мутаций в одном гене, что неудивительно, учитывая относительную простоту организации вируса. На бактериальном уровне масштабы уже совершенно другие. Исследователи из Калифорнийского университета в Ирвайне (США) попробовали выработать термоустойчивость у кишечной палочки Escherichia coli. В течение года исследователи выращивали 115 бактериальных колоний при 42,2 ˚C. Температура влияет на многие процессы в организме, поэтому учёные надеялись увидеть значительные изменения в геноме. Выяснилось, что у тех бактерий, что выжили в таких условиях, появилась 1 331 мутация, распределённая по более чем 600 сайтам в ДНК. Но все эти мутации и их сайты оказались принадлежащими двум направлениям: изменения в одном из них касались белковой машины, синтезирующей РНК; изменения во втором происходили в rho-белке, контролирующем завершение синтеза РНК. Очень редко бактерия совмещала эти две группы изменений. Однако трансформации в каждой из белковых машин сопровождались мутациями в каких-то добавочных генах, которые зависели от главной, целевой группы.

Почему мутации именно этих двух групп генов помогают кишечной палочке выживать при высокой температуре? Почему они делают это порознь? Это учёным только предстоит выяснить. Пока же на основе описанных работ можно сделать вывод о том, как происходит формирование нового признака. Множество мутаций вбрасываются в более или менее чётко очерченную группу генов, причём они находятся под сильнейшим влиянием других мутаций из-за взаимосвязанности генов и зависят от параллельных изменений в других организмах, как в случае вируса и бактерии. Есть, конечно, целая группа признаков, которая возникает из-за одной–двух мутаций, но такие признаки в большинстве случаев оказываются болезнетворными и к эволюционному успеху явно не приводят.


Источник:  КОМПЬЮЛЕНТА


 

При поиске пищи пернатые ориентируются на те виды деревьев, которые гусеницы считают наиболее питательными. Таким образом, деревья могут сохранить собственную пищевую привлекательность для своих целей, полагаясь на заботу птиц.

Черешня! Вкусно! Да, одно из самых привлекательных деревьев для гусениц. (Фото chuckpearson01.)Черешня! Вкусно! Да, одно из самых привлекательных деревьев для гусениц. (Фото chuckpearson01.)По мнению экологов из Калифорнийского университета в Ирвайне (США), птицы ведут себя ничуть не хуже опытных садоводов, запоминая деревья, которым гусеницы благоволят больше всего. И перед гусеницами встаёт проблема: питаться плохо и остаться в живых — или питаться хорошо, но, скорее всего, недолго.

Два года исследователи наблюдали за пищевым треугольником в лесах Коннектикута; результаты этой работы они опубликовали в журнале American Naturalist. Разные виды деревьев могут довольно сильно разниться на вкус гусениц. На самых питательных число вредителей может наполовину превышать их же количество на деревьях, не отличающихся высокими пищевыми качествами. Такие пищевые предпочтения насекомых не могли остаться незамеченными для птиц. По словам учёных, склонность птиц посещать более «гусеничные» деревья (например, черешню) не заложена генетически, а приобретается с опытом.

Возможно, этот вывод не так уж и интересен («Подумать только, птицы летят туда, где больше пищи!»), но всё же он может иметь большое значение для эволюционно-экологических построений.

Главные герои в данном случае не птицы и даже не гусеницы, а растения. Взаимоотношения между птицами и гусеницами оказываются той силой, которая вынуждает деревья делать выбор — быть вкусными или невкусными. С одной стороны, невкусность защищает сама по себе, с другой — «вкусное» дерево защитят птицы.

Возможно, именно благодаря пернатым многие деревья в ходе эволюции сохранили свои высокие, с точки зрения гусениц, вкусовые качества. Авторы работы подчёркивают, что, рассматривая сразу несколько звеньев пищевой цепи, мы получаем намного больше информации о жизни видового сообщества как с экологической, так и эволюционной точки зрения.


Источник:  КОМПЬЮЛЕНТА


 

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Как пальцы произошли из плавников

20-08-2016 Просмотров:5644 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Как пальцы произошли из плавников

Генетические исследования, проведенные в Медицинском центре Чикагского университета, показали, что HOX-гены, отвечающие за формирование конечностей, отвечают у рыб за формирование плавников. Подробности исследования опубликованы в журнале Nature. КонечностиУченые под руководством Нила...

Когда нужно понять чужое поведение, мозг человека и макаки работают…

12-06-2013 Просмотров:10908 Новости Нейробиологии Антоненко Андрей - avatar Антоненко Андрей

Когда нужно понять чужое поведение, мозг человека и макаки работают одинаково

Прошли те времена, когда способность моделировать чужое психическое состояние считалась исключительно человеческой. Под этим понимают умение воспринимать чужие мысли и чувства как свои, осознавать чужие мотивы поступков, чужие переживания и...

Ученые нашли на спутнике Юпитера Европе "пищу" для бактерий

06-04-2013 Просмотров:10156 Новости Астрономии Антоненко Андрей - avatar Антоненко Андрей

Ученые нашли на спутнике Юпитера Европе "пищу" для бактерий

Ученые обнаружили на спутнике Юпитера Европе большие запасы перекиси водорода — потенциального источника энергии для бактерий-экстремофилов, которые могут обитать в подледном океане этого небесного тела, сообщает пресс-служба Лаборатории реактивного движения...

Поздняя тяжёлая бомбардировка как необходимое условие возникновение жизни на Земле

10-06-2013 Просмотров:10126 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Поздняя тяжёлая бомбардировка как необходимое условие возникновение жизни на Земле

Анализ образцов горных пород из различных уголков Земли — от Австралии и Зимбабве до Западной Виргинии (США) — позволил предположить, что поздняя тяжёлая бомбардировка, имевшая место 4,1–3,8 млрд лет назад,...

Задние крылья помогали микрораптору управлять полётом

24-10-2012 Просмотров:10654 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Задние крылья помогали микрораптору управлять полётом

Зачем динозаврам хорошо развитые перья на всех четырёх конечностях? Этот вопрос встал перед учёными в 2003 году, с обнаружением на северо-востоке Китая останков вида Microraptor gui, жившего в меловом периоде...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.