Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Симбиоз


Ученые рассказали о тропических муравьях, которые расселяют и выращивают растения, чтобы затем обустроить в них себе жилье. Ранее считалось, что столь плотные симбиотические отношения у муравьев есть только с грибами.

Philidris nagasauPhilidris nagasauРезультаты исследования, проведенного немецкими специалистами из Мюнхенского университета, опубликованы в журнале Nature Plants.

Муравьи заслуженно пользуются репутацией прекрасных садоводов. Например, муравьи-листорезы выращивают в своих гнездах грибные плантации – грибы и их хозяева столь тесно связаны, что не могут существовать друг без друга. Авторы статьи показали, что похожими отношениями муравьи связали себя также с тропическим растением Squamellaria.

Это растение относится к эпифитам, то есть оно произрастает не за земле, а на стволах других деревьев. Ученые обнаружили на острове Фиджи шесть видов Squamellaria, клубни которых всегда заселены муравьями вида Philidris nagasau. Клубни пронизаны сложной системой ходов и предоставляют муравьям надежное убежище и сладковатые выделения. В ответ муравьи удобряют растения своими испражнениями – они служат для Squamellaria важным источником азота, с дефицитом которого сталкиваются все эпифиты.

Исследователи выяснили, что муравьи вытаскивают семена Squamellaria из плодов до их полного созревания, когда те становятся лакомой пищей для птиц. Муравьи разносят эти семена по стволу дерева и затем засовывают их в трещины коры. Когда семена прорастают, муравьи навещают их, удобряя своими экскрементами. Получается, что муравьи не только расселяют растение, но и культивируют его.

Интересно, что данный вид муравьев может занимать сразу несколько индивидуальных Squamellaria, расположенных на одном дереве или даже на нескольких соседних деревьях, соприкасающихся ветками. Одно из этих растений служит штаб-квартирой для матки, а в других обитают рабочие и муравьиный расплод. Отдельные дома связаны между собой феромонными дорожками.


Источник: infox.ru


Опубликовано в Новости Зоологии

Палеонтологи обнаружили в Танзании окаменевшие гнезда термитов возрастом 25 млн лет, в которых те выращивали грибы. Следовательно, эти насекомые придумали сельское хозяйство еще в ту эпоху, когда людей не было и в помине.

240616Об этом говорится в статье австралийских специалистов из Университета Джеймса Кука, опубликованной в журнале PLOS ONE.

В настоящее симбиоз между термитами из группы Macrotermitinae и грибами Termitomyces играет очень важную роль в экосистемах Африки. Считается, что благодаря ему в африканских саваннах разлагается до 90% сухой древесины. Термиты разжевывают древесные остатки и засеивают их спорами гриба, которой превращает растительный материал в ферментированную массу, богатую питательными веществами.

Авторы статьи обнаружили в юго-западной Танзании фрагменты двух древних термитников, в которых когда-то происходил этот процесс. Они разглядели в них специальные камеры для выращивания грибных садов, а также окаменевшие милосферы - так называются специальные гранулы, которые формируют термиты из разжеванных растительных остатков. Именно милосферы и служат субстратом для грибов.

Возраст находки составляет 25 млн лет, она относится к позднему олигоцену. Это древнейшее свидетельство симбиоза между грибами и насекомыми. Кроме термитов, за выращиванием грибов замечены только две группы насекомых - муравьи-листорезы и амброзиевые жуки-долгоносики. Но ископаемые свидетельства такого поведения у муравьев известны лишь с позднего миоцена (5,7-10 млн лет), а для долгоносиков они вообще не найдены.

Интересно, что по своей архитектуре обнаруженные термитники практически не отличаются от современных. Это значит, что агрономические приемы термитов на протяжении всего прошедшего времени не менялись. Авторы статьи полагают, что термиты перешли к выращиванию грибов после того, как дождевые леса в Африке уступили место саваннам - грибоводство дало термитам возможность приспособиться к более засушливому климату.


Источник: infox.ru


Опубликовано в Новости Палеонтологии

Редкий симбиоз наблюдают ученые между хищным кувшиночником вида Nepenthes hemslayana и летучими мышами на острове Барнео. Как уверяют ученые из Германии, опубликовавшие статью в журнале Current Biology, растение буквально заманивает летучую мышь ультразвуком. Кратко об открытии можно почитать в ScienceShot.

Летучая мышь подлетающая к хищному растениюЛетучая мышь подлетающая к хищному растениюХищное растение Nepenthes hemslayana из рода кувшиночников служит местом укрытия для летучих мышей. Внутри кувшина прохладно, нет паразитов и других летучих мышей. В свою очередь, летучая мышь удобряет непентес своими экскрементами, обогащенными азотом. Но как же животные находят это растение в густых тропиках? Ответить на этот вопрос взялись ученые из Зоологического института и музея при Грайфсвальдском университете.

Летучая мышь ищет место для насеста с помощью эхолокации, то есть излучает ультразвуковые волны и по их отражению определяет расстояние до объекта и его форму. Биологи выяснили, что внутри кувшина N. hemslayana есть особая вогнутая структура, которая отражает сигнал летучей мыши так, что животное его распознает и приземляется в кувшин.

Растения крайне редко используют звук для привлечения. Такая тактика известна у растений в Южной Америке, которых опыляют летучие мыши. Теперь ее нашли и у растений Старого света. Авторы исследования считают, что эта структура в кувшине N. hemslayana служит своеобразным акустическим флагом. Она дает кувшиночнику преимущество перед другими растениями в густом лесу, которые могли бы служить летучим мышам насестом.


Источник: Научная Россия


Опубликовано в Новости Ботаники

Взаимовыгодное сосуществование пчелиных волков с почвенными бактериями продолжается по меньшей мере с мелового периода. Из поколения в поколение осы передают микроорганизмов своему потомству, но как именно осуществляется этот процесс, до сих пор остается загадкой.

Окаменелость осыОкаменелость осыСимбиотические взаимоотношения широко распространены в живой природе и играют ключевую роль в экологии и эволюции большинства организмов. Например, микориза грибов является важнейшим пищевым партнером 90% всех наземных растений. Многие сложившиеся симбиозы способны длиться сотни миллионов лет, но механизм устойчивости таких связей до конца современной науке не ясен, ведь для этого участники симбиоза должны уметь различать своих и чужих.

Показателен в этом отношении "оборонительный союз", заключенный между осами-филантами, часто называемыми "пчелиными волками", и несколькими линиями почвенных бактерий. Филанты охотятся на пчел, которых закапывают затем в подземных гнездах в качестве пищи для подрастающих личинок. Бактериальные симбионты рода Streptomyces, живущие в полостях антенн "пчелиных волков" и на коконах их личинок, вырабатывают коктейль из девяти различных антибиотиков, защищающий личинок от вредных почвенных грибков и бактерий. Во многом эта стратегия напоминает комплексную профилактику, применяемую в человеческой медицине.

Реконструировав филогению нескольких видов филантов и их симбионтов, ученые немецкие палеонтологи из университета Регенсбурга и института химической экологии Макса Планка обнаружили, что симбиоз ос со Streptomyces возник не позже конца мелового периода, то есть около 68 млн лет назад. К настоящему времени уже около 170 видов ос живут в симбиозе с бактериями-"антибиотиками". Как выяснилось, осы разных видов способны обмениваться штаммами бактерий-симбионтов, но происходит ли это в результате хищничества или при повторном использовании гнезд друг друга, пока не ясно.

Кроме того, палеонтологи обнаружили, что осы-филанты способны передавать потомству только определенные штаммы бактерий, связанные с ними длительной симбиотической историей. Для этого осам подсаживали стрептомицесов, принадлежащих посторонним линиям. Как показали наблюдения, чужие бактерии прижились на антеннах филантов, но передача их на коконы личинок не состоялась. Со временем ученые надеются раскрыть молекулярные основы того, как "пчелиным волкам" удается избирательно предотвращать передачу посторонних бактерий.

"Установлено, что "пчелиные волки" иногда заменяют свои бактерии, но при этом они всегда меняют их на симбионта другого вида "волков", – рассказал ведущий автор исследования Мартин Кальтенпрот. – Несмотря на то, что свободно живущие родственники симбиотических бактерий очень распространены в среде обитания этих ос, они, видимо, не в состоянии стабильно поселяться на "пчелиных волках" и заменять собой "родных" симбионтов".

"Недопущение других – потенциально вредных – линий бактерий позволяет избежать заражения личинок. Одновременно осы гарантируют, что их потомство унаследует полезный защитный штамм", – пояснил, в свою очередь, соавтор Кальтенпрота Эрхард Стром. Стратегия передачи полезных симбионтов по наследству представляет собой уникальный пример симбиоза, остающегося стабильным на протяжении миллионов лет, и помогает объяснить изобилие и сохранение симбиотических ассоциаций в мире насекомых, отмечает EurekAlert!


Источник: PaleoNews


Опубликовано в Новости Палеонтологии

Слизевик Dictyostelium discoideum с момента своего открытия стал одним из главных модельных объектов в биологии: сначала его использовали при исследовании процессов, имеющих отношение к биологии развития и эволюции многоклеточности, а позже оказалось, что с помощью Dictyostelium discoideum можно изучать ещё и социально-экологические взаимосвязи. Причиной такой научной популярности стал особый образ жизни, который ведёт слизевик. Dictyostelium discoideum питается почвенными бактериями и может долгое время существовать в виде одноклеточных амёб, но когда пищи становится мало, амёбы сливаются друг с другом в крупное многоклеточное образование, в котором происходит дифференциация клеток и образование плодового тела. На нём появляется стебельчатый вырост, на котором сидит сорус с набором спор, и из них позже получаются новые одноклеточные амёбы. 

D. discoideum на многоклеточной стадии (фото Carolina Biological). D. discoideum на многоклеточной стадии (фото Carolina Biological). Биологию Dictyostelium discoideum начали изучать в лаборатории, однако лабораторное культивирование было не совсем то (а точнее, совсем не то), к чему слизевик привык на воле, а потому между ним и учёными возникло, скажем так, некоторое недопонимание. В 1998 году исследователи из Университета Райса (США) обнаружили на некоторых диких клонах слизевика бактерии, сидевшие на спороносных органах. Оказалось, что, даже будучи очищенными от бактерий, Dictyostelium discoideum подбирали их снова, причём бактерии были именно теми, какие слизевик употреблял в пищу.

Получалось, что эти почвенные амёбы держали при себе запас пищи, поступая подобно фермерам, разводящим скот. Примерно треть диких клонов оказались такими «фермерами»; что же до лабораторных слизевиков, то они, во-первых, могли быть потомками тех, кто фермерством не увлекался, а во-вторых, условия культивации не обязательно соответствовали намерениям слизевиков иметь при себе запас бактерий. 

Статья про амёб-фермеров вышла в 2011 году в Nature, однако история на этом не закончилась. Исследователи заметили, что далеко не все бактерии при слизевиках съедобны (то есть не все годятся в пищу самим слизевикам). Тут же возникло множество вопросов: то ли это бактерии-«попутчики», присоединившиеся к выращиваемым бактериям-«коровам», то ли паразиты, наносящие вред слизевикам, то ли что-то ещё. Выяснилось, что Dictyostelium discoideum с такими несъедобными бактериями росли даже активнее, чем без них. Тогда и родилась идея о том, что эти бактерии нужны слизевикам не для прокорма в трудные времена, а для защиты. 

Дальнейшие эксперименты это подтвердили. Во-первых, эти бактерии помогали подавить слизевиков-конкурентов. Не все штаммы Dictyostelium discoideum держат при себе бактерии, но все ими питаются, и те, кто занимается «фермерством», могут просто красть чужих «коров». Несъедобные бактерии, которых держат при себе слизевики-«фермеры», подавляют развитие потенциальных грабителей: под действием каких-то бактериальных биомолекул у слизевиков-«нефермеров» появляется наполовину меньше спор. Во-вторых, по словам исследователей, защитные бактерии ещё как-то сами по себе стимулируют рост приютивших их слизевиков. 

В Nature Communications Дебра Брок, Дэвид Келлер и Джоан Страссман, работающие теперь в Вашингтонском университете в Сент-Луисе (США), обсуждают, почему фермерский симбиоз, с одной стороны, оказался таким устойчивым среди слизевиков, а с другой — не распространился на все штаммы D. discoideum.

Когда еды много, «фермеры» уступают «нефермерам», так как первые не съедают всё, что есть, а оставляют часть бактерий «на развод». «Нефермеры» же сметают всё подчистую, а потому могут расти и размножаться интенсивнее. Но избыток еды время от времени заканчивается, и тогда преимущество получают «фермеры», у которых еда есть всегда.

Однако они не имели бы такового, если бы при них не было ещё одних симбионтов — бактерий, в прямом смысле отравляющих жизнь конкурентам-«нефермерам». В противном случае конкуренты бы объедали «фермеров», сведя всё их преимущество на нет.

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Микробиологии

Чередование растительных культур на сельскохозяйственных полях преследует две цели. Во-первых, у разных растений разные требования к почве, и, варьируя культуры, мы защищаем почву от истощения по какому-то одному показателю: если кукуруза предпочитает вещество А, а соя благоволит веществу Б, то в год сои почва восстанавливает вещество А, которого стало много меньше после года кукурузы. Во-вторых, ротация культур предотвращает вспышки численности вредителей. Многие из них предпочитают питаться на ограниченном наборе видов и просто уходят с поля, если не могут найти то, что им нужно. На следующий год можно сажать то, чего в прошлом году хотелось вредителям, ибо их просто не будет. 

Кукурузный жук. (Фото Coastlander.) Кукурузный жук. (Фото Coastlander.) Но иногда такой способ борьбы с вредителями даёт осечку, как это случилось, например, с кукурузным жуком (западным кукурузным корневым листоедом) Diabrotica virgifera virgifera.

Чередуя кукурузу, которой питается этот жук, с соей, американским фермерам довольно долго удавалось держать численность вредителя под контролем. Личинки жука живут под землёй, на корнях кукурузы, и, превратившись во взрослых насекомых, они ещё какое-то время остаются там же, чтобы отложить яйца рядом с источником пищи. Если же на месте кукурузы окажется соя, у которой есть специальные системы защиты от жука, 70% личинок погибает.

Но в какой-то момент этот способ перестал работать, и «соерезистентный» жук отправился на завоевание Америки. 

Исследователям из Университета Иллинойса в Урбане и Шампейне (США) удалось выяснить, что позволило кукурузному жуку приспособиться к смене культур. Во-первых, жуки стали откладывать яйца не только на корнях кукурузы, но и на корнях других растений. А во-вторых (и в-главных), они обрели способность питаться именно соей. А помогли им в этом желудочно-кишечные бактерии. 

Устойчивость жуков к сое оказалась такова, что вместо 70% личинок погибало всего 20%. Но если жуков обрабатывали антибиотиком, то их выживаемость падала до прежнего уровня. Дальнейшие исследования подтвердили, что микрофлора у устойчивых жуков сильно отличается от микрофлоры обычных вредителей: некоторые виды бактерий наблюдались только у устойчивых насекомых.

Действие сои на жуков заключалось в подавлении пищеварительных ферментов, но в присутствии бактерий ферменты у насекомых работали по-прежнему. 

Пока не очень ясно, то ли бактерии сами производят нужный фермент на замену тому, чью активность подавила соя, то ли они освобождают от влияния сои собственные ферменты жуков. Так или иначе, в борьбе с вредителями нужно учитывать, что их устойчивость к ядам может возникнуть не только из-за их собственных генетических мутаций, но и в силу вот такой помощи со стороны бактериальных (и, возможно, не только бактериальных) симбионтов.

Результаты исследования опубликованы в журнале PNAS.

 


Истчоник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Зоологии

Подобно фермерам-людям, муравьи-листорезы (Leafcutter ant) выращивают свои грибковые сады не без помощи азотофиксирующих бактерий. Это открытие группы учёных, возглавляемой профессором Кэмероном Карри (Cameron Currie) из университета Висконсина в Мэдисоне, заставляет биологов под новым углом взглянуть на роль муравьёв в тропических и субтропических лесах.

Муравьиная королева и её  выводок в грибковом саду,  заботливо выращиваемом  в колонии насекомых  (фото Michael Poulsen).   Муравьиная королева и её выводок в грибковом саду, заботливо выращиваемом в колонии насекомых (фото Michael Poulsen). Исследователи нашли бактерии-азотофиксаторы двух видов в 80 колониях листорезов восьми биологических видов из Аргентины, Коста-Рики и Панамы. Эти бактерии опосредованно (через сады грибов, являющихся основной пищей муравьёв) помогают муравьям приобретать атмосферный азот.

 Муравьи-листорезы насчитывают  41 вид (кадры UW-Madison). Муравьи-листорезы насчитывают 41 вид (кадры UW-Madison). Серия опытов показала, что усвоенный бактериями-симбионтами Nдействительно попадает затем в муравьёв. (Ранее только у одного отряда насекомых — термитов — был обнаружен симбиоз с бактериями-азотофиксаторами).

Муравьи-листорезы используют листья как питательную среду для грибов, так что в определённом смысле являются растительноядными. Но ведь известно, что насекомые, питающиеся растениями, ограничены в потреблении азота.

Однако у листорезов таких проблем нет: их многометровые подземные гнезда укрывают миллионы особей. В лесах Амазонки листорезы насчитывают общий вес, в четыре раза больший, чем биомасса всех наземных животных, вместе взятых!

Теперь ясно — в чём кроется секрет эволюционного успеха данных муравьёв: порядка 50 миллионов лет назад, когда у них зародилось "грибное фермерство", насекомые приобрели и партнёров-бактерий, усваивающих атмосферный азот, — этот источник важного элемента позволил муравьям доминировать в своей среде.

"Без азота не существует способа, каким бы эти ребята могли достичь таких больших размеров колонии", — заключает Суен.

Более того, наземные экосистемы тропиков, по сути, бедны азотом, так что вновь обнаруженный его мощный источник может оказаться критически важным: через муравьёв этот элемент попадает по пищевой цепи в остальную часть всей экосистемы.

 


 

Источник: MEMBRANA


 

Опубликовано в Новости Зоологии

Многие животные используют фотосинтез, чтобы получать питательные вещества. Фотосинтезом на Земле занимаются растения, водоросли и бактерии, но сейчас речь идёт вовсе не о поедании их животными, а о симбиозе одних с другими. Например, кораллы получают углеводы, синтезированные живущими в них водорослями. Так же поступают губки и голожаберные моллюски. Более того, некоторые животные, кажется, сумели овладеть фотосинтезом сами, безо всякой помощи растений: вспомним хотя бы прошлогоднее сообщение о фотосинтезирующих тлях.

Пятнистая амбистома (фото Matthew Ignoffo)Пятнистая амбистома (фото Matthew Ignoffo)Но всё это примеры из группы беспозвоночных. Могут ли позвоночные пользоваться преимуществами фотосинтеза с водорослями или растениями, никто точно сказать не мог, хотя о таком сожительстве известно довольно давно. Так, в 1888 году биологи обнаружили, что одноклеточные водоросли Oophila amblystomatis колонизируют яйца саламандры амбистомы пятнистой. К 1940-м стало окончательно ясно, что тут имеют место симбиотические отношения: водоросли поглощали метаболический «мусор», выделяемый зародышами амбистомы. При этом зародыши усваивали кислород, выделяемый фотосинтезирующими сожителями. В итоге зародыши из яиц с большим содержанием водорослей развивались быстрее и выживали с большей вероятностью, чем те, у кого водорослей было мало.

Зародыши пятнистой амбистомы получают кислород и глюкозу от симбиотических водорослей. (Фото Pecos Valley Diamond.)Зародыши пятнистой амбистомы получают кислород и глюкозу от симбиотических водорослей. (Фото Pecos Valley Diamond.)Но не так давно обнаружилась ещё одна грань в отношениях между маленькими саламандрами и их симбиотическими водорослями. Оказалось, что водоросли живут буквально внутри эмбрионов, входя в их клетки. Это навело исследователей на мысль, что одним кислородом дело тут не ограничивается и зародыши амбистомы могут получать от водорослей ещё что-то.

Этим «чем-то» оказалась глюкоза. Исследователи из Темплского университета (США) держали яйца пятнистой амбистомы в воде, содержащей радиоактивный изотоп углерода-14. Водоросли брали этот углерод и встраивали его в молекулы глюкозы. При этом, как пишут учёные в Journal of Experimental Biology, зародыши тоже становились слегка радиоактивными, но только в том случае, если их держали на свету. То есть тот радиоактивный углерод, который получали зародыши, мог попасть к ним лишь в результате фотосинтеза.

Иными словами, зародыши не только дышали, но и кормились с помощью водорослей — подобно тому как это делают кораллы или губки.

Пятнистая амбистома пока что единственный пример позвоночного, использующего фотосинтез, но, как полагают исследователи, точно так же могут поступать другие земноводные, чьё развитие проходит в воде. Для зародышей присутствие водорослей чрезвычайно важно: без них эмбрионы развиваются дольше и хуже. Что же до водорослей, то пока не очень ясно, какое место в их жизни занимают яйца саламандр. Очевидно, их отсутствие не должно так уж сильно влиять на самочувствие водорослей. В конце концов, земноводные размножаются лишь в определённый сезон, и в остальное время года водорослям нужно как-то обходиться без саламандровых яиц.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Зоологии

Считается, что хлоропласты — фотосинтетические органеллы растений и водорослей — возникли в результате симбиоза: когда-то давным-давно нефотосинтезирующие клетки предоставили внутри себя убежище фотосинтезирующим. Постепенно фотосинтетики, поселившиеся внутри, упростились и превратились в хлоропласты. Однако не все хлоропласты имеют одно происхождение. Чаще всего, полагают учёные, они образовывались из цианобактерий. Однако зелёные и красные водоросли получили свои хлоропласты, по-видимому, «проглотив» какие-то эукариотические, небактериальные клетки, которые уж имели к тому времени хлоропласты. В некоторых случаях от ядра поглощённых клеток-фотосинтетиков остался так называемый нуклеоморф — редуцированное клеточное ядро, находящееся между мембранами хлоропласта. И это помимо собственного генома пластиды, оставшегося от бактерии, которую поглотил первый хозяин.

Схема развития эндосимбиоза, благодаря которому возникли водоросли-«матрёшки» (рисунок John M. Archibald / Dalhousie University)Схема развития эндосимбиоза, благодаря которому возникли водоросли-«матрёшки» (рисунок John M. Archibald / Dalhousie University)Иными словами, перед нами двойной эндосимбиоз: сначала один эукариот поглощает цианобактерии, а потом второй эукариот поглощает первого с его хлоропластами, в которые превратились цианобактерии. Чтобы лучше понять эволюционный путь такой «матрёшки», исследователи из Объединённого института геномных исследований (США) и Университета Дальхауз (Канада) сравнили геномы двух микроскопических водорослей, Bigelowellia natans и Guillardia theta, относящихся к криптофитовым и хлорарахниофитовым водорослям. Обоих называют «живыми ископаемыми» — из-за нуклеоморфа в хлоропластах. Учёные проанализировали последовательности всех геномов: собственного ядерного генома водоросли, ДНК митохондрий, ДНК хлоропласта и ДНК нуклеоморфа хлоропласта. Причём отдельно сравнивались полные геномы водорослей и транскриптомы, то есть РНК, синтезированная на активных генах.

Криптофитовая водоросль-«матрёшка» Guillardia theta (фото Geoff McFadden / University of Melbourne)Криптофитовая водоросль-«матрёшка» Guillardia theta (фото Geoff McFadden / University of Melbourne)Как пишут авторы в журнале Nature, и Bigelowellia natans, и Guillardia theta имеют на удивление сложную систему ферментов, необходимых для фиксации углерода и вообще углеродного обмена. Но ответ на главный вопрос — зачем водорослям понадобилось сохранять нуклеоморф — оказался на удивление простым. У Bigelowellia natans и Guillardia theta перестал работать механизм переноса генов эндосимбионтов в ядро хозяина. У большинства других организмов эндосимбионт жертвовал своим геномом, который переходил во владение хозяина. У криптофитовых и хлорарахниофитовых водорослей механизм переноса и встройки генов в хозяйский геном перестал работать, поэтому ДНК симбионта до сих пор присутствует в хлоропластах в виде нуклеоморфа.

Иными словами, никакой нужды в дополнительном отдельном геноме у водорослей не было, просто во время установления эндосимбиотических отношений что-то пошло не так. Вместе с тем остаётся вероятность, что какой-то смысл в этой странной генетической «матрёшечности» всё же найдут: генетические и молекулярно-биологические исследования таких водорослей пока только набирают силу. Но уже сейчас можно сказать, что исследователи прояснили несколько важных этапов в эволюции фотосинтетических организмов: теперь мы знаем, что ДНК некоторых из них в действительности не принадлежит одному организму, а представляет собой результат смешения хозяйского генома и генома поглощённого эндосимбионта, от которого в клетке хозяина остались только хлоропласты.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Эволюции

Пятнистые саламандры оказались не вполне животными. В клетках их организма ученые обнаружили… водоросли. Возможно также, что в подобном симбиозе живут лягушки, моллюски и даже рыбы.

Пятнистая саламандра (Ambistoma maculatum)Пятнистая саламандра (Ambistoma maculatum)Исследователи из научных центров Канады под руководством Райан Кëрни (Ryan Kerney) из Университета Далхаузи (Dalhousie University) описали тонкости отношений между эмбрионами саламандры пятнистой (Ambistoma maculatum) и зелеными водорослями. Естествоиспытатели выяснили, что водоросли прорастают внутрь эмбриона. Но саламандрята от этого не погибают, а, напротив, набираются сил для дальнейшего роста и развития.

Водоросль прижилась в саламандре

Пятнистые саламандры – не очень активные, медлительные и малоподвижные животные. Эти амфибии проводят большую часть жизни под землей – в спячке, которая продолжается с октября-ноября и до весны. С наступлением тепла саламандры выбираются наружу и начинают размножаться. Хвостатые амфибии ползают возле водоемов и луж, куда и откладывают яйца.Эмбрионы пятнистой саламандры (Ambistoma maculatum)Эмбрионы пятнистой саламандры (Ambistoma maculatum)

Более 120 лет назад Генри Орр (Henry Orr) из Принстонского университета впервые описал взаимовыгодное сотрудничество (симбиоз) между личинками пятнистой саламандры и зелеными водорослями. Последователи Генри Орра проводили множество экспериментов, доказывающих целесообразность этого эмбрионального союза. «Икринки, выращенные в условиях недостаточной освещенности, не зеленели, так как в них не было водорослей, — резюмируют результаты предшествующих экспериментов Райан Кëрни и коллеги. – Эмбрионы, сформировавшиеся в зеленых икринках, были более жизнеспособными, крепкими и развитыми; имели бόльшую мышечную массу». Ученые полагают, что водоросли Oophila ambylystomatis, поселившиеся в окружении эмбриона, получают от саламандрят азот, который содержится в продуктах метаболизма.

Райан Кëрни и коллеги расширил горизонты познаний о том, как развиваются эмбрионы. Биологи использовали современные генетические технологии, которые позволили увидеть зеленые водоросли не только в окружающем эмбрионе желе, но и в самом в теле саламандры: «ДНК-анализ показал, что союз Ambistoma maculatum и Oophila ambylystomatis более интимный: водоросли проникают внутрь клеток», — резюмируют авторы статьи Intracellular invasion of green algae in a salamander host, опубликованной в PNAS.

«Исследования вековой и полувековой давности не позволяли обнаружить водоросли в половых клетках саламандры, — продолжают исследователи. — Считалось, что зеленые водоросли перебираются в икринки из окружающей среды. Результаты ДНК-анализа позволяют утверждать, что водоросли передаются эмбриону в том числе и вертикально – от родительских половых клеток».

«Это уникальный пример того, как водоросли поселились в клетках позвоночных животных, — продолжают исследователи. — Эмбрионы лягушек, рыб и моллюсков тоже сожительствуют с зелеными водорослями. Вероятно, мы не знаем о других примерах внутриклеточного сожительства позвоночных и водорослей только из-за отсутствия должных исследований», — завершают авторы статьи.


Источник: Infox.ru


Опубликовано в Новости Зоологии
Воскресенье, 19 Февраль 2012 00:00

У фотосинтеза нашли третьего «предка»

Объединение цианобактерий с хозяйской клеткой, которое привело к образованию хлоропластов, происходило при участии третьего участника — паразитической бактерии, осуществлявшей перенос генов между симбионтами.

Водоросль-глаукофит Cyanophora paradoxa (фото cuplantdiversity)Водоросль-глаукофит Cyanophora paradoxa (фото cuplantdiversity)Считается, что растения и водоросли произошли в результате объединения каких-то древних эукариотических клеток и цианобактерий. Цианобактерии обладали способностью к фотосинтезу и служили пищей другим древнейшим одноклеточным. В какой-то момент хищники перестали съедать пойманные цианобактерии, оставляя их жить внутри себя. Постепенно отношения «хищник — жертва» превратились в отношения между симбионтами, и в конце концов цианобактерии превратились в хлоропласты — фотосинтезирующие органы, которые есть у всех современных растений и водорослей.

Исследователи из Университета Ратджерса (США) полагают, что объединение цианобактерий и древних эукариот не обошлось без участия третьей стороны — некоей паразитической бактерии, подобной современным хламидиям. В статье, опубликованной в журнале Science, авторы сообщают о результатах анализа генома глаукофитов — небольшой группы зелёных водорослей, состоящей всего из 13 видов. Эти водоросли числятся среди «живых ископаемых»: считается, что они обладают наименее «одомашненной» версией цианобактерий. Для их пластид придумали даже специальное название — цианеллы.

Глаукофиты демонстрируют нам, как происходило объединение цианобактерий и их хозяев. У глаукофитов есть белки, необходимые для синтеза крахмала, переноса хлоропластных белков и других биохимических процессов, общих для растений и водорослей. Но при этом у них нет собственных генов, которые нужны для транспорта синтезированных питательных веществ из цианобактерий-пластид. Авторы статьи утверждают, что им удалось найти генетические следы третьего симбионта — паразитической бактерии, чьи гены оказались необходимы для осуществления связи между хозяйской клеткой и цианобактерией.

Обмен генами между тремя участниками позволил создать хлоропласт, которым водоросли и растения пользуются и поныне. Скорее всего, некоторые гены цианобактерий, которые до сих пор сохраняются у цианелл глаукофитов, впоследствии перешли в клеточное ядро при посредничестве бактерии-паразита. Растения должны были принять в свои гены «сожителей», чтобы научиться управлять формирующимся органом. Гипотеза о том, что современные растения представляют собой химеры из нескольких предков, уже выдвигалась в 1960-х годах, но получить аргументы в её пользу смогли только сейчас. Что до причин, которые заставили древних одноклеточных эукариот предложить бактериям симбиоз, то о них остаётся только гадать. Возможно, как полагают учёные, 1,6 млрд лет назад резко сократилось количество пищи, и голодающим одноклеточным хищникам пришлось подумать о смене стратегии выживания.


Источник:  КОМПЬЮЛЕНТА


 

Опубликовано в Новости Ботаники

Мухоморы произошли от грибов, которые сами получали для себя всё необходимое. Чтобы научиться формировать микоризу, им пришлось отказаться от ферментов, расщепляющих сложные органические вещества, и в результате потерять самостоятельность.

Мухомор красный (фото Firstimpression.fi).Когда мы говорим о грибах, то в первую очередь вспоминаем съедобные шампиньоны, лисички, опята, а ещё… мухоморы. И неудивительно: мухоморы кишмя кишат в детских книжках, мультфильмах, чудовищных росписях на стенах детских садов и т. п. Но канонический мухомор, с красной шляпкой в белых хлопьях, — это лишь один вид, мухомор красный. В целом же род мухоморов необычайно разнообразен и насчитывает несколько сотен видов, как съедобных (да-да!) — вроде кесарева гриба, так и смертельно опасных — в варианте бледной поганки.

Однако, независимо от их токсичных свойств, все мухоморы приносят большую пользу деревьям. Это одни из важнейших микоризообразователей. Их мицелий оплетает корни растений, образуя микоризу и помогая растению поглощать питательные вещества (взамен получая синтезированные растением органические соединения). Исследователи из Гарвардского университета (США) решили проследить, как развивались отношения мухоморов с растениями и на какие изменения пришлось пойти грибам, чтобы установить этот чрезвычайно выгодный симбиоз. Чтобы восстановить облик древнейшего предка мухоморов, учёные проанализировали геном около ста видов (примерно одна шестая всего рода). Степень родства видов между собой оценивалась по изменениям в нескольких генах, кодирующих ферменты расщепления целлюлозы.Микориза: грибные гифы (оранжевые), пронизывающие кору корней дерева (фото Eye of Science).

В статье, опубликованной в сетевом издании PLoS ONE, авторы пишут, что некогда мухоморы были, если можно так выразиться, «вольными грибами». Они занимались разложением мёртвой органики, в том числе целлюлозы, и ни о каком симбиозе не помышляли. Впоследствии, однако, род принял решение о том, что сотрудничать с высшими растениями выгоднее, и грибы стали входить в симбиоз с деревьями и совершенствовать микоризу. Но за это пришлось заплатить определённую цену — отказаться от генов, за счёт которых мухоморы раньше перерабатывали целлюлозу. Чем моложе гриб с точки зрения эволюции, тем меньше у него следов присутствия этих генов. В первую очередь исчезали ферменты, которые отвечали за самые первые этапы переработки целлюлозы. Белки, подключавшиеся к этому процессу позже, сумели сохраниться даже у относительно молодых видов.

Останься эти гены в полном составе — никакого сотрудничества не вышло бы: гриб мог в любой момент атаковать ткани партнёра. Сейчас микориза — один из самых выдающихся примеров симбиоза, но без корней дерева грибу пришлось бы выживать. Можно сказать, что мухоморы пожертвовали самостоятельностью в обмен на симбиоз, и сейчас они не могут расти сами, даже на исключительно богатой почве.

По словам учёных, мухоморы не колебались и не делали шагов назад: переход от самостоятельной жизни к симбиозу в их роду случился только раз и был необратим. Скорее всего, по такой же схеме развивались многие симбиотические взаимоотношения: партнёрам приходится жертвовать какими-то свойствами, чтобы симбиоз вполне удался. Но мухоморы в своём безвозвратном отказе от расщепления целлюлозы пошли по наиболее бескомпромиссному пути.

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Микологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Настоящий единорог. В Китае нашли древнюю корову с одним рогом

11-04-2014 Просмотров:5420 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Настоящий единорог. В Китае нашли древнюю корову с одним рогом

Сказочные единороги все же существовали на самом деле. Обитали они вдоль границ Тибета и внешне напоминали коренастых антилоп с единственным рогом во лбу. Остатки одного из таких единорогов только что...

Палеонтологи раскрыли тайну появления первых животных

17-08-2017 Просмотров:1638 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи раскрыли тайну появления первых животных

Первые многоклеточные живые существа появились на Земле примерно 650 миллионов лет назад благодаря двум событиям – появлению планктона и других водорослей и временному превращению Земли в "ледышку", говорится в статье, опубликованной в журнале Nature. "Молекулы жиров,...

Восстание рабов — обычное дело среди муравьёв

27-09-2012 Просмотров:7281 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Восстание рабов — обычное дело среди муравьёв

Несмотря на отработанные веками схемы социального паразитизма, муравьям-рабовладельцам часто приходится иметь дело с непокорностью муравьёв-рабов, которые перестают заботиться о господском потомстве, а то и вовсе убивают личинок своих хозяев. Муравьи-рабы атакуют...

Морские огурцы как дышат, так и едят

01-02-2013 Просмотров:12031 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Морские огурцы как дышат, так и едят

Морские огурцы, или голотурии, известны в первую очередь необычным вариантом автотомии: когда им угрожает враг, от которого не получается скрыться, они выплёвывают в него свою пищеварительную систему. Пока хищник пытается...

В Канаде нашли динозавра-кролика

24-05-2013 Просмотров:8051 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Канаде нашли динозавра-кролика

Не все динозавры были громадными и тяжеловесными монстрами, встречались среди них и совсем маленькие животные, совершенно теряющиеся в тени своих гигантских родственников. Остатки одного из таких скромных, но очень быстрых...

top-iconВверх

© 2009-2018 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.