Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Впадина Марианская


Изучение структуры дна Марианской впадины помогло геологам вычислить примерное количество воды в недрах Земли и обнаружить, что ее там примерно в три раза больше, чем считалось ранее. Их выводы были представлены в журнале Nature.

Трехмерная карта дна Марианской впадины.Трехмерная карта дна Марианской впадины."Мы давно спорили о том, как много воды попадает в мантию Земли вместе с "тонущей" морской корой, а также о том, меняется ли ее доля в разных зонах субдукции в зависимости от того, как породы "ныряют" в недра планеты. Марианская впадина позволила нам заглянуть настолько глубоко в эти разломы, как раньше никто не делал", — заявил Даг Винс (Doug Wiens) из университета Вашингтона в Сент-Луисе (США).

Марианская впадина, расположенная в нескольких десятках километров к востоку от Марианских островов и архипелага Гуам, является самым глубоким местом на Земле – ее глубина в самой низкой части, в так называемой впадине Челленджера, составляет чуть более 11 километров.

За минувшие 50 лет было совершено всего четыре попытки достичь ее дна – в 1960 году в Марианскую впадину опустились швейцар Жак Пиккар и американец Дон Уолш, в 1996 году – японский батискаф Кайко, в 2009 году – его американский "коллега" Нере. В 2012 году во впадину Челленджера опустился режиссер Джеймс Камерон в аппарате Deepsea Challenger.

Помимо различных спускаемых аппаратов, ученые активно изучают Марианскую впадину при помощи сейсмографов, установленных на дне океана в ее окрестностях, а также на соседних островах. Винс и его коллеги получили первую подробную геологическую карту этого разлома, объединив данные подобных наблюдений за последний год. 

Характер распространения сейсмических колебаний через толщу пород, как объясняют геологи, зависит от формы этих пластов, характера взаимодействий между ними, а также того, в какую сторону они ориентированы. Это позволяет раскрыть их структуру, направление движения потоков пород и даже узнать их химический состав, наблюдая за тем, как быстро и каким образом "эхо" землетрясений проходит через такие зоны.

Марианская впадина, в свою очередь, представляет собой так называемую зону субдукции — участок литосферы, где один пласт морской коры "ныряет" под другую плиту, наступающую на нее. Ученых давно интересует дальнейшая судьба ее материи – как много ее попадает в глубинные слои мантии Земли, и какая ее часть почти сразу возвращается назад в виде извержений вулканов и излияний магмы в срединно-океанических хребтах и в так называемых островных дугах.

Как оказалось, пласт "тонущей" коры под Марианской впадиной почти полностью уходил в глубинные слои мантии Земли, сохраняя свою структуру даже на глубинах в 50-60 километров. Это, в свою очередь, означает, что в недра планеты попадает значительно больше морских горных пород, богатых водой и ее соединениями, чем считалось раньше. 

По оценкам ученых, Марианская впадина "закачала" свыше 79 миллионов тонн воды в глубинные слои мантии Земли за последний миллион лет, что примерно в 3-4 раза выше предыдущих оценок, вычисленным по данным наблюдений за менее глубокими и крупными желобами.

Если это действительно так, то тогда вода и связанные с ней осадочные породы должны играть заметно более значимую роль в "круговороте" пород в недрах Земли, чем сейчас считают ученые. Как считает Винс, последующие открытия такого рода заставят геологов переработать все теории, описывающие процесс обмена породами между мантией и корой планеты.


Источник: РИА Новости


 

Опубликовано в Новости Геологии

Очередная экспедиция Национального управления океанических и атмосферных исследований (National Oceanic and Atmospheric Administration, NOAA) на судне Okeanos Explorer проводится с 20 апреля по 10 июля 2016 года.

Рыба семейства афионовых (Aphyonidae)Рыба семейства афионовых (Aphyonidae)Целью изучения является глубочайший океанский желоб. Он тянется вдоль Марианских островов на 1 500 километров, имеет V-образный профиль: крутые (7−9°) склоны и плоское дно шириной 1−5 км, которое разделено порогами на несколько замкнутых депрессий. У дна давление воды достигает 108,6 МПа, что примерно в 1072 раза больше нормального атмосферного давления на уровне Мирового океана. Самая глубокая точка Марианского желоба, «Бездна Челленджера», залегает на отметке 10 994 м ниже уровня моря.

Специалисты, работающие на Okeanos Explorer, опускают дистанционно управляемый аппарат, который ведет видеосъемку на разных глубинах, предоставляя специалистам бесценный научный материал. В числе самых необычных открытий — обнаружение рыбы семейства афионовых (Aphyonidae). В научных каталогах она описана только по пойманным или мертвым особям; в естественной среде обитания ее ранее никто не видел.

Лучеперая рыба семейства афионовых, как и другие представители отряда ошибнеобразных (Ophidiiformes), живет на глубинах около 2000−6000 метров. Ее узкое 10-сантиметровое тело с небольшой головой покрыто прозрачной кожей и лишено чешуи; спинной плавник длинный, а анальный совмещен с хвостовым. Среди других отличий Aphyonidae от большинства рыб — отсутствие плавательного пузыря.

Снятая на камеру рыба-призрак плавала на глубине 2400 метров. Смотрите полную видеотрансляцию со дна Марианской впадины.

 


 

Источник: Nat-geo


 

Опубликовано в Новости Зоологии

Марианская Впадина была открыта в 1875 году британским экипажем судна Челленджер, в честь которого она и получила свое название. Первые измерения ее глубины были произведены ими ручным лотом и дали показания - 8367 метров. В дальнейшем глубина неоднократно уточнялась и по современным замерам поризведенным в 2011 году, ее глубина составляет 10 994 ± 40 метров. 23 января 1960 года швейцарский исследователь Жак Пикар и лейтенант ВМС США Дон Уолш опустились в батискафе "Триест" в самую глубокую точку Мирового океана — бездну Челленджера Марианской впадины. Погружение продолжалось 4 часа 48 минут. За это время аппарат достиг отметки 10912 метров ниже уровня моря (по современным расчетам, максимальная глубина бездны — 10944 метра).

Глубоководный жительГлубоководный жительЭкспедиция сделала несколько важных открытий. Так, выяснилось, что на глубинах свыше 6000 метров тоже есть жизнь — мимо батискафа проплывали рыбы, похожие на камбалу. Кроме того, Жак Пикар опроверг бытовавшее в то время мнение, что вблизи океанского дна отсутствует восходящее движение водных масс. Благодаря этому открытию было решено отказаться от идеи захоронение радиоактивных отходов на дне Марианской впадины.

24 марта 1995 года на дно бездны Челленджера опустился японский зонд Кайко достигнув глубины 10 911,4 метра. Следующее погружение на дно бездны было совершено автоматическим апаратом Нерей, который достиг глубины 10 902 метра.

После Пикара и Уолша в Марианскую впадину опускался только один человек — американский кинорежиссер Джеймс Кэмерон. Батискаф Кэмерона Deepsea Challenger достиг глубины 10908 метров, не дотянув до результата его предшественников всего четыре метра. В ходе погружения велась подводная фото- и видеосъемка, были отобраны пробы грунта и образцы живых организмов.

 Стадии изучения Марианской впадиныСтадии изучения Марианской впадины


 

По материалам:  РИА Новости и Википедии


 

 

Опубликовано в Новости Окенологии

Американские ученые, которые исследовали Марианский желоб в Тихом океане, открыли ранее неизвестный вид глубоководной рыбы, обитающий на глубине 8 километров.

Новый вид рыб обитающих в Марианской впадинеНовый вид рыб обитающих в Марианской впадине"Мы были просто потрясены, когда увидели ее. Кто-то на корабле сказал, что это создание что-то среднее между щенком, ангелом и угрем", — цитирует газета Los Angeles Times профессора биологии Поал Йенси.

По его словам, рыбу обнаружили случайно, благодаря видеокамере, которая снимала аппарат по сбору образцов содержимого морского дна. Рыба неоднократно медленно проплывала перед объективом, что позволило ученым предположить, что это неизвестное науке морское создание.

Рыба, которой пока не дали название, была примерно 25 сантиметров в длину, она частично прозрачна — очертания её скелета были видны сквозь кожу. На опубликованном газетой видео рыба плывет, раскинув свои длинные плавники как крылья у самолета. Это самая глубоководная рыба, известная науке, отмечает Los Angeles Times.

В 1998 и 2009 годах на дно впадины опускались автоматические подводные аппараты — японский зонд Kaiko и после него американский подводный катамаран Nereus, который впервые произвел фото- и видеосъемку, отобрал геологические и биологические пробы, а также захватил несколько обитателей рекордных глубин. К удивлению ученых, жизнь существовала и даже процветала на самом дне Марианской впадины, на глубине в 11 километров. Более того, на дне Марианской впадины живет примерно в два раза больше бактерий, чем в глубинах океана.


Источник: РИА Новости


 

 

Опубликовано в Новости Зоологии

Новое исследование может положить конец спорам: обнаружена последовательность лав возрастом 4,4 млрд лет, которые могут оказаться остатками первой зоны субдукции на Земле. 

Скалы острова Гуам сложены застывшей лавой, относящейся ко временам формирования Марианской впадины. Врезка демонстрирует характерные для лавы складки. (Фото Mark Reagan.) Скалы острова Гуам сложены застывшей лавой, относящейся ко временам формирования Марианской впадины. Врезка демонстрирует характерные для лавы складки. (Фото Mark Reagan.) В 2008 году изучение древних лав на севере Квебека — зеленокаменного пояса Нуввуагиттук — показало, что они обладают одинаковыми геохимическими характеристиками с лавами из современных зон субдукции (например, Марианской впадины). Это означает, что они, должно быть, смешались с солёными жидкостями, которые выдавливаются в зонах субдукции — и только в зонах субдукции. Геохимия этих пород — своего рода отпечаток пальцев, позволяющий идентифицировать лавы зон субдукции.

Геологи Трейси Рашмер и Саймон Тёрнер из Маккуорийского университета (Австралия), а также их коллеги решили взглянуть на эти породы поближе и обнаружили чёткую последовательность слоёв. Геолог Марк Рейган из Айовского университета (США), несколько раз спускавшийся в Марианскую впадину (его рекорд — 6 500 м), подтвердил, что там он видел точно такую же картину. Каждый слой — определённый этап рождения зоны субдукции. 


Ключ к пониманию этого процесса заключается в том, как породы и их химия меняются с каждым последующим слоем. По мере того как океаническая плита опускается, лавы поднимаются и откладываются поверх друг друга, формируя слои вулканических пород. С возрастанием глубины тепло и давление начинают выдавливать различные элементы из плиты в виде жидкостей, которые со временем меняют химический состав лавы, обогащая её таким редкоземельным элементом, как иттербий, но в то же время обедняя ниобием. Первый слой в ряду извергается до того, как жидкости смогут выйти из плиты, но уже следующий даёт достаточное количество жидкости для появления химических признаков, характерных для зоны субдукции. Последний слой несёт огромное количество редкоземельных элементов и очень мало ниобия, после чего всякие сомнения отпадают: да, это лава зоны субдукции. 

Марианская впадина и Нуввуагиттук схожи не только геохимией. Характеристики пород меняются совершенно одинаковым образом. Но это убедило далеко не всех. Геохимик Джулиан Пирс из Кардиффского университета (Великобритания) отмечает, что зеленокаменный пояс Нуввуагиттука слишком стар. Время могло изменить его настолько, что по нему нельзя судить о происходившем 4,4 млрд лет назад. К тому же, по мнению специалиста, выявленные геохимические характеристики свойственны не только зонам субдукции. 

Авторы исследования не согласны: они считают, что тепло и давление не меняют геохимические характеристики до неузнаваемости, поэтому древность ещё не повод отказываться от попыток выяснить происхождение пород. Что до зон субдукции, то схожесть с Марианской впадиной говорит сама за себя. 

Так или иначе, но все спорщики согласны с тем, что зоны субдукции могли создавать идеальные условия для возникновения жизни. Жидкости, выделяемые пододвигающейся корой, трансформируют мантийные породы в минерал серпентин, а также порождают горячие источники на дне океана. Серпентин даёт энергию, а бор, которым изобилуют такие горячие источники, выступает стабилизатором РНК. Поэтому открытие самой древней зоны субдукции претендует одновременно на обнаружение одного из первых мест на Земле, где могла зародиться жизнь. 

Результаты исследования опубликованы в журнале Geology.

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Геологии

Кинорежиссёр Джеймс Кэмерон не нашёл никаких свидетельств жизни, погрузившись в прошлом году под воду почти на 11 км в самой глубокой точке Мирового океана. Оказывается, ему надо было взять с собой микроскоп и заглянуть на несколько сантиметров глубже.

Марианская впадинаМарианская впадина.Ронни Глуд из Университета Южной Дании и его коллеги обнаружили необычайно высокий уровень микробной активности в отложениях на месте погружения г-на Кэмерона — в Бездне Челленджера на западе Марианской впадины.

Учёные отправили в жёлоб автономные датчики и сборщики образцов, которые смогли измерить активность микроорганизмов в верхнем 20-сантиметровом слое осадка на морском дне. Давление там почти в 1 100 раз больше, чем на поверхности. Ещё большей проблемой является поиск пропитания. Пища встречается лишь в форме детрита, опускающегося с поверхности океана. Основная его часть поглощается по пути другими организмами. Лишь 1% органических веществ, образующихся на поверхности, достигает абиссальных равнин, простирающихся на глубине 3–6 км. Каковы же шансы тех, что живут ещё глубже?

Как ни странно, учёные обнаружили, что они весьма высоки. В пробах из Бездны Челленджера бактерии встречаются примерно в 10 раз чаще, чем в образцах из абиссальных равнин: в каждом кубическом сантиметре в среднем находится 10 млн микроорганизмов. К тому же эти глубоководные вдвое активнее своих собратьев.

Г-н Глуд и его коллеги объясняют это тем, что в океанские впадины попадает много осадка. Они широки, их склоны круты, так что осадок скатывается на дно вместе с оползнями.

Примечательно, что совсем рядом, в зоне Северного Тихоокеанского течения, в донных отложениях практически нечего есть, но и там существует жизнь. По-видимому, микроорганизмы способны прижиться где угодно.

Результаты исследования опубликованы в журнале Nature Geoscience.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Окенологии

Где можно увидеть жизнь такой, какой она была в момент своего рождения? Известный кинорежиссер Джеймс Кэмерон убежден, что это можно сделать, опустившись на дно Марианской впадины. Экосистемы, которые обнаружил там отважный путешественник, напоминают те, что существовали на нашей планете свыше трех миллиардов лет тому назад.

Местоположение Марианской впадиныМестоположение Марианской впадиныДжеймс Кэмерон в рамках своей новой работы сделал нечаянное открытие: на дне Марианской впадины на глубине в 10,9 километра живут себе микробные маты — биопленки, питающиеся веществами, которые они добывают из донных отложений. Аналогичные места обитания и процессы, происходящие в них, полагают исследователи, в глубокой древности породили химическую реакцию, в результате которой на Земле, а, возможно, и в других местах Солнечной системы появились первые живые организмы.

"Мы считаем, что эта химическая реакция может лежать в основе метаболизма, — говорит Кевин Хэнд, астробиолог калифорнийской лаборатории Jet Propulsion (JPL). — Это может быть движущей силой, которая привела к появлению жизни. Возможно, не только здесь, но и в таких мирах, как Европа (ледяная луна Юпитера)".

Миссия Кэмерона Deepsea Challenger совершила ряд погружений, в том числе одно пилотируемое, в Марианскую впадину в период между 31 января и 3 апреля этого года. В пучину морскую Кэмерон погружался лично. Спустившись на дно, режиссер не только любовался окружающим пейзажем: Кэмерон взял пробы грунта и сделал ряд снимков. Поднявшись наверх, Кэмерон рассказал журналистам, что там, внизу, довольно мрачно, а дно похоже на поверхность Луны. Однако, в отличие от безжизненного спутника Земли, в холодных глубинах океана все же таится жизнь.

Марианская впадина в разрезе и ее сравнение с ЭверестомМарианская впадина в разрезе и ее сравнение с ЭверестомНайденные исследователями бактериальные маты представляют собой достаточно распространенную еще с древних времен экосистему прокариот. Хотя некоторые исследователи считают ее аналогом организма многоклеточных — уж больно слаженно действуют бактерии, входящие в "коврик". Как правило, мат объединяет несколько групп "узких" специалистов: одни, например, разлагают только сероводород, другие предпочитают сульфиды, третьи — сульфаты и т. п. Таким образом мат "работает", используя практически все ресурсы в виде химических соединений, что есть вокруг, а члены этой колонии делятся друг с другом органикой, получившейся в результате этого разнообразного хемосинтеза.

Также интересно еще и то, что часто "отходы" одних бактерий, входящих в состав мата, являются полезным ресурсом для других. Это легко продемонстрировать на примере сожительства двух групп бактерий — сероводородных фотосинтетиков и сульфатредукторов. Первые из них могут фотосинтезировать, используя не кислород, как высшие растения, а сероводород. Однако побочным продуктом их деятельности являются оксиды серы, которые, попав в воду, сразу же образуют серную кислоту, а затем сульфаты. Эти сульфаты — желанная пища для сульфатредукторов, которые восстанавливают их с помощью водорода. Но побочным продуктом данного процесса является сероводород, который использует первая группа бактерий.

Таким образом, если две группы этих бактерий будут жить в пределах одного мата, то они образуют вполне себе самодостаточную экосистему. А если еще добавить к ним метанокисляющих бактерий как доноров водорода (они окисляют метан с образованием углекислого газа и молекулярного водорода) и метоногенных бактерий, которые, используя углекислый газ и молекулярный водород, произведенный метанокислителями, получают в качестве побочного продукта тот самый метан, который так нужен первой группе, то "хозяйственная деятельность" станетещеболее сбалансированной. Тогда за водородом далеко ходить не надо, его могут поставлять другие члены колонии. Словом, мат представляет собой практически безотходный комбинат, какой не смогли еще создать люди, ну, а природа породила его свыше трех миллиардов лет тому назад!

В Марианской впадине, как показали результаты экспедиции, живут не только микробные "коврики" — там было замечено и еще несколько ранее неизвестных науке представителей животного мира. Например, гигантские 17-сантиметровые рачки амфиподы (Amphipoda), их называют в России бокоплавы, внешне они весьма похожи на креветок. Исследование этих ракообразны показало, что в их организме содержатся соединения, помогающие тканям эффективнее работать при чрезвычайно высоком давлении.

"Одно из этих соединений — сциллоинозит, идентичный по составу тестируемому сейчас препарату для разрушения амилоидных бляшек, которые связывают с развитием болезни Альцгеймера", — отмечает Дуг Бартлетт, микробиолог из Института океанографии Скриппса при Университете Калифорнии в Сан-Диего. Своей очереди к исследователям ждут еще 20 тысяч микробов, взятых из Марианской впадины.

Еще одного "новичка" нашли на глубине в 8,2 километра в Новобританском желобе у берегов Папуа-Новой Гвинеи. Им оказался представитель морских огурцов, или голотурий (Holothurioidea) — забавных существ из группы иглокожих (Echinodermata). "Они существовали в этих глубинах и в прошлом, но не были запечатлены на пленку. Мы увидели одного из них и думаем, что он представляет собой новый вид", — говорит Бартлетт. А стены желоба украшает огромное количество желудевых червей, глубоководных беспозвоночных, которые засыпают дно впадины своими спиралевидными экскрементами. "Если вы никогда не думали о червях с любовью, то, посмотрев это видео, полюбили бы их", — заверяет Бартлетт.

На видео Кэмерона видны не только глубоководные обитатели, но и старейшее морское дно на планете. Сто восемьдесят миллионов лет назад, когда по Земле еще гуляли динозавры, скалы на дне Марианской впадины были раскаленной лавой. А кадры, снятые режиссером в Новоанглийском желобе, вполне могут оказаться рекордными по глубине места съемки лавовых подушек, полагает морской геолог Пэтти Фрайер из Гавайского университета в Гонолулу.

Измененные породы, дающие пищу микробным матам, являются частью молодых тектонических плит, лежащих поверх древнего дна Тихого океана. Марианская впадина — это зона субдукции, где две тектонические плиты столкнулись и одна из них наползла на другую. Просачивающаяся сквозь нагромождения скал вода меняет состав пород посредством серпентинизации. В ходе этого процесса образуются сера, метан и водород, что и дает бактериям пищу.

В последние годы ученые склоняются к мнению о том, что ранняя жизнь на Земле зародилась порядка четырех миллиардов лет назад в зонах субдукции, подобных Марианской впадине. В этих желобах температура была ниже, и серпентинизированные породы дали необходимый толчок химической реакции, которая и привела к зарождению жизни.

"Эти желоба могли быть тем местом, где появилась жизнь, — говорит Кэмерон. — Эта тайна должна быть разгадана. Надеюсь, мы еще поныряем". Пока что новые погружения не планируются, но, по словам режиссера, погружные и спускаемые глубоководные аппараты находятся в рабочем состоянии и сейчас хранятся на территории его особняка.

 


 

Источник: pravda.ru


 

Опубликовано в Новости Окенологии

Океанические впадины играют решающую роль в формировании климата. К такому выводу пришли ученые после анализа данных, полученных с глубоководного батискафа, исследовавшего Марианскую впадину — самое недоступное место на планете. Спуск робота-батискафа был осуществлен в конце 2010 года. Это был первый этап исследования, призванного определить роль Мирового океана в круговороте углерода, самого интенсивного биохимического процесса на планете.

News8a6a1aМарианская впадина, известная также как Бездна Челенджера, — это самое глубокое место в океане. Она расположена в Тихом океане, тянется вдоль Марианских островов на 1500 километров, имеет крутые (семь-девять градусов) склоны и плоское дно шириной один-пять километров. Лишь однажды пилотируемый глубоководный аппарат достиг ее дна. 23 января 1960 года лейтенант ВМС США Дон Уолш и щвейцарский исследователь Жак Пикар опустились до отметки 10 915 метров на батискафе "Триест".

Учитывая огромные сложности, связанные с исследованием этих глубин (давление более 1100 атмосфер, мрак и температуры, близкие к нулю, а также сложная последующая реабилитация экипажа батискафа), сегодня исследования проводятся с помощью оснащенных по последнему слову техники роботов. В конце уходящего 2010 года международная команда исследователей под руководством Рони Глада из Копенгагенского университета осуществила погружение такого батискафа и опубликовала первые результаты экспедиции.

Ученые пришли к выводу, что океанические впадины действуют как поглотители двуокиси углерода (СО2 — самой распространенной формы углерода в биосфере), причем гораздо более активные, чем считалось ранее, и играют не последнюю роль в формировании климата. "Мы хотели определить, сколько органического материала откладывается на дне и поедается ли этот материал бактериями, или распадается, или складируется. Выяснилось, что океанические впадины — это своеобразные ловушки органического вещества, которое подвергается там интенсивной переработке бактериями. Там больше бактерий, чем на глубинах шесть тысяч метров на абиссальных равнинах (глубоководные океанические равнины), которые ранее считались главными утилизаторами органики", — сказал Глад ВВС.

Причем эта способность непропорционально велика по сравнению с площадью поверхности, занимаемой впадинами. "Хотя эти впадины занимают только около двух процентов от поверхности океана, мы думаем, что их роль в круговороте углерода очень велика, в том смысле, что они, вероятно, аккумулируют гораздо больше углерода благодаря тому, что функционируют как ловушки, то есть в их глубинах аккумулируется больше органической материи, чем в других частях океана", — сказал Глад.

News8a6a2Океанические впадины действуют как поглотители двуокиси углерода подобно тому, как это делают на поверхности планеты леса. Такие ловушки могут действовать в направлении, обратном глобальному потеплению, и способствовать поддержанию экосистемы планеты в равновесии. "Чем больше углерода захватывает Мировой океан, тем больше кислорода в атмосфере", — сказал Глад.

В данном исследовании участвуют Институт морской микробиологии Макса Планка в Бремене, японское Агентство морской геологии и технологии (JAMSTEC) и Копенгагенский университет. Робот-батискаф достиг дна впадины через три часа после старта. Для измерения накопленного углерода впервые были созданы и применены сложные глубоководные приборы. Чтобы выдержать давление почти 11-километрового столба воды, все датчики были сделаны из титановых сплавов. На следующем этапе ученые намереваются установить, сколько углерода аккумулируется во впадинах по сравнению с другими частями океанического дна.

Океанические впадины не впервые удивляют ученых. В 2008 году интернациональная экспедиция под руководством британского Университета Абердина обнаружила на глубине более семи тысяч метров неизвестные виды глубоководных рыб, креветок и прочих ракообразных. Экспедиция специалистов исследовала океанский разлом вблизи побережья Чили и Перу в юго-восточной части Тихого океана, где глубина доходит до 7500 метров. Тогда возникло три вопроса: чем эти виды питаются, как выдерживают колоссальное давление и как размножаются. Судя по всему, первый вопрос решен — органикой, которую океанические глубины "засасывают", как космические черные дыры.


Источник: Pravda.ru


Опубликовано в Новости Метеорологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Распад суперконтинента 116 млн лет назад заморозил Землю

21-06-2013 Просмотров:7632 Новости Метеорологии Антоненко Андрей - avatar Антоненко Андрей

Распад суперконтинента 116 млн лет назад заморозил Землю

Ученые выяснили, что 116 млн лет назад из-за распада Гондваны температура воды в океане упала на несколько градусов. Это привело к вымиранию целого ряда планктонных организмов. Земля мелового периодаРезультаты исследования, проведенного...

Первые травоядные гиганты произошли от мелких хищников

25-04-2014 Просмотров:5589 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Первые травоядные гиганты произошли от мелких хищников

Предками громоздких пермских синапсид, впервые в истории сухопутной фауны научившихся употреблять в пищу растения, были мелкие и юркие хищники. Одного из них описали в своей новой работе канадские палеонтологи. Eocasea martini...

Мшанки подтвердили потепление в Антарктике

23-02-2011 Просмотров:10360 Новости Метеорологии Антоненко Андрей - avatar Антоненко Андрей

Мшанки подтвердили потепление в Антарктике

Использовав коллекции Роберта Скотта, ученые смогли изучить, как изменилась скорость роста морских организмов за более чем вековой промежуток времени. Колония мшанок О климатических изменениях в Антарктике ученым рассказали мелкие беспозвоночные животные...

Палеонтологи проследили за эволюцией булавы анкилозавров

01-09-2015 Просмотров:4504 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи проследили за эволюцией булавы анкилозавров

Ученые выяснили, что анкилозавры, широко известные благодаря наличию хвостовой булавы, приобрели свое грозное оружие постепенно. Сначала у их предков в хвосте появилась специальная ручка, и лишь много позже к ней...

В Арктике найдена самая древняя земная порода

31-10-2010 Просмотров:8422 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

В Арктике найдена самая древняя земная порода

В Арктике, возможно, обнаружена древнейшая порода Земли. Редкие образцы были обнаружены на архипелаге Баффинова Земля (Канада). Фото Мcgill.ca За миллиарды лет практически весь первоначальный материал, из которого была создана наша планета,...

top-iconВверх

© 2009-2019 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.