Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Геологии


Новости Геологии (114)

В окрестностях заброшенной канадской деревни Боу-Сити в провинции Альберта обнаружен ударный кратер около 8 км в поперечнике и примерно в километр глубиной.

Топографическая карта местности с контурами возможного кратера (изображение W. Xie и T. Brown)Топографическая карта местности с контурами возможного кратера (изображение W. Xie и T. Brown)Подозрения о том, что к западу от бывшего посёлка расположено нечто странное, появились ещё в 1930-х годах. Изрезанный рельеф наводил на мысль, что под ним что-то есть. Тем не менее ведущий автор исследования Вэй Се из Университета Альберты не скрывает удивления. На конференции Американского геофизического союза она объяснила это тем, что засыпанные кратеры найти нелегко и известно их мало.

Г-жа Се и её коллеги заглянули под землю с помощью данных нефтеразведки, которая проводилась посредством искусственно создаваемых сейсмических волн, которые отражаются от границы между слоями различных типов пород и дают представление об их расположении. Интерпретация данных позволила обнаружить не только большую «оспину», но даже центральный пик.

То, что кратер находится близ поверхности, говорит о том, что столкновение произошло менее 70 млн лет назад. С другой стороны, он достаточно стар, чтобы его полностью засыпало.

Хотя сейсмические данные выглядят убедительно, окончательным доказательством станет обнаружение «ударных» минералов возле места падения метеорита. Г-жа Се планирует провести бурение в начале 2013 года.


 

По мнению большинства геологов, Гранд-Каньон возник 5−6 млн лет назад в результате того, что река Колорадо размывала породу слой за слоем. Одно из доказательств — огромные кучи вымытого гравия на западной оконечности каньона, появившиеся как раз в это время.

Гранд-Каньон (Фото Phillip L. Jones)Гранд-Каньон (Фото Phillip L. Jones)Однако новое исследование посвящено другим породам, обнажённым на всём протяжении каньона. Когда эрозия уносит материал над ним, камень остывает. Следы этого охлаждения хранятся несколькими способами, в том числе в виде гелия внутри апатита. «Когда апатиту жарко, гелий покидает кристаллы; когда он холодный — гелий остаётся в них, — поясняет ведущий автор исследования Ребекка Флауэрс из Колорадского университета (США). — Таким образом, путём измерения гелия мы можем знать, когда порода остыла, оказавшись ближе к поверхности Земли, или, что более точно, когда поверхность Земли приблизилась к камню по мере образования каньона».

Исследователи не только проверили наличие гелия в кристаллах апатита из разных мест каньона, но и проанализировали расположение элемента внутри кристаллов, что подсказывает, насколько быстро охлаждалась порода. Учёные пришли к выводу, что некая древняя река вырезала пропасть, примерно соответствующую форме и размерам Гранд-Каньона, около 70 млн лет назад.

Карл Карлстрём из Университета Нью-Мексико (США) не видит ничего странного в том, что на этом месте могли быть каньоны десятки миллионов лет назад. Тем не менее, по его словам, большинство геологических данных подтверждает мнение о том, что современный каньон (то, что туристы видят сегодня) появился лишь 5−6 млн лет назад.

Единственная загадка, на которую пока нет ответа, связана с образованием конкретных живописных форм, ради которых туда и едут со всего света.

Результаты исследования опубликованы в журнале Science. Предыдущую работу тех же авторов на данную тему см. здесь.


Источник: КОМПЬЮЛЕНТА


Истоки лавы, изливающейся в ходе крупнейших современных извержений, остаются предметом дискуссий. Речь идёт о срединно-океанических хребтах, которые тянутся на десятки тысяч километров в морских глубинах. В этих местах земная кора разрывается, и частично расплавленная порода постоянно заполняет образующиеся пустоты, формируя новую океаническую кору. Эту часть никто не оспаривает.

Остывающая лава исландского Эйяфлатлайокудля (фото Martin Rietze / Corbis)Остывающая лава исландского Эйяфлатлайокудля (фото Martin Rietze / Corbis)Вопрос состоит в том, насколько верно мы интерпретируем лавы этих извержений, то есть правильно ли мы понимаем, что они рассказывают нам о мантии. Это очень важная проблема, потому что у нас слишком мало источников сведений об этой части планеты. И главная трудность заключается в оценке изменений, через которые прошла порода, выйдя из мантии, оказавшись на морском дне и дождавшись учёных. 

Издавна при определении минерального состава этих пород геологи полагаются на так называемую фракционную кристаллизацию. Представьте себе некий объём магмы, которая охлаждается: минералы один за другим застывают и опускаются на дно, и расплавленного материала становится всё меньше. Элементы, находящиеся в расплаве, постепенно реагируют с кристаллизовавшимися минералами, и в конце концов остаются только «несовместимые элементы». Как правило, это редкие элементы, стронций, неодим и гафний, которые и дают ключ к разгадке происхождения магмы в мантии.

Когда магма полностью излита и охлаждена, то, что вы получаете в итоге (то есть состав океанической коры), зависит от начального сочетания элементов (в мантийной породе), времени, ушедшего на остывание, и того, добавлялась ли свежая мантия в процессе. Короче говоря, то, что у вас лежит в горшке, соответствует тому, что вы туда положили, не правда ли?

Нет, говорят геологи Хью О'Нил из Австралийского национального университета и Фрэнсис Дженнер из Института Карнеги (США), которые обнаружили неожиданную закономерность в «несовместимых элементах», действующую во всё мире. Она намекает на более масштабный и единый процесс производства магмы, которая составляет океаническую кору Земли: «круговорот магмы через глобальный ансамбль магматических бассейнов» — вот как они это называют.

Почему это важно? Как поясняет в сопутствующей статье геофизик Альбрехт Хофман из Института химии Общества Макса Планка (ФРГ), это означает, что мы должны пересмотреть процесс, отвечающий за самые объёмные извержения на планете. Такого рода фундаментальные изменения, конечно, случаются не каждый день.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


Около 74 тыс. лет назад на острове Суматра произошло чудовищное извержение вулкана Тоба. По оценкам, оно было в 5 тыс. раз масштабнее извержения вулкана Сент-Хеленс в 1980 году. Да что там говорить — это крупнейшее извержение на планете за последние 2 млн лет!

Кратер вулкана Тоба (изображение William Bowen, California Geographical Survey)Кратер вулкана Тоба (изображение William Bowen, California Geographical Survey)Тоба извергнул столько лавы, что хватило бы на два Эвереста. Огромные тучи пепла закрыли солнце на долгие годы. От взрыва остался кратер диаметром 50 км. В дополнение ко всему Андерс Свенссон из Копенгагенского университета (Дания) и его коллеги выяснили, что на обоих полюсах шли дожди из серной кислоты.

Учёные давно вычислили, на какой глубине ледовых шапок Гренландии и Антарктики следует искать следы извержения Тобы, но до сих пор не удалось найти никаких остатков пепла. Зато на этот раз найдены слои серной кислоты. Датировка сходится.

Анализ кернов позволил также прояснить детали того, насколько радикально изменился климат в годы после извержения. Ранее исследователи подсчитали, что подобное событие могло привести к снижению среднемировой температуры на 10 ˚C и что холода могли продержаться десятилетия. В действительности, судя по кернам, охлаждение было кратковременным и не носило глобального характера. Южное полушарие его практически не заметило.

Кроме того, новые данные могли бы уладить некоторые археологические дебаты. Извержение Тобы произошло в критический момент ранней истории человечества, когда Homo sapiens впервые высунул нос из Африки. Учёным хотелось бы знать, повлияло ли на историю нашего рода это событие и можно ли говорить об уничтожении значительной части популяции.

Слои пепла, найденные в Азии, служат очень важной точкой отсчёта для работы с артефактами, которые слишком стары для радиоуглеродного датирования. Обнаружение кислотных слоёв в кернах льда может стать ещё одним фоном, который позволит поместить археологические находки в климатический контекст.

Результаты исследования опубликованы в журнале Climate of the Past.

 


 Источник: КОМПЬЮЛЕНТА


 

Гималаи могут оказаться на 20 млн лет младше, чем мы думаем, считают исследователи из Сиднейского университета (Австралия).

Деревня Тенгбоче в Непале, где расположен известный монастырь (фото Murat Selam)Деревня Тенгбоче в Непале, где расположен известный монастырь (фото Murat Selam)Профессор Джонатан Эйтчисон и его коллеги полагают, что Индийский субконтинент врезался в Евразию много позже, всего 35 млн лет назад, а не 55 млн, как написано в учебниках. При этом на пути к северу Индия пережила многочисленные столкновения.

Очевидно, что Индию и Азию океан не разделяет с тех самых пор, как они соединились. Поэтому имеет смысл анализировать возраст наиболее молодых пород морского происхождения между двумя массивами суши. Их датировка как раз и даёт те самые 35 млн лет.

Кроме того, исследователи обратили внимание на возраст самых молодых вулканических пород, имеющих отношение к процессу субдукции и залегающих вдоль южных границ Азии. Субдукцией называется захождение одной литосферной плиты под другую. Зачастую она связана с вулканической активностью — например, в Тихоокеанском огненном кольце.

Как только океан Тетис, который разделял древние континенты Гондвану и Лавразию, окончательно исчез (это произошло, когда Индия зашла под Азию), вулканизм этого типа прекратился. Соответственно, самые молодые породы, относящиеся к этому процессу, тоже способны указать на время столкновения.

Третьей линией доказательств стали грубозернистые осадочные породы. Дело в том, что, когда происходит столкновение тектонических платформ и поднимаются новые горные цепи, такие породы сбрасываются горами в виде гравия.

Время формирования Гималаев — важный вопрос, ведь всякий раз, когда появляется новый горный массив (особенно такой высоты), он оказывает сильное влияние на климатические системы, меняя пути атмосферной циркуляции. Например, нынешние азиатские муссоны — порождение Гималаев.

Результаты своих исследований г-н Эйтчисон опубликовал пока лишь в виде короткого письма в журнале PNAS (комментарий экспертов здесь) и представил на специальном мероприятии. Кроме того, на его счету ряд статей о частных вопросах хронологии столкновения Индии и Азии.

 


 

Источник: КОМПЬЮЛЕНТА


 

Извержения вулканов обычно невелики, но порой их сила такова, что под угрозой оказываются целые цивилизации.

Один из методов скелетизации, применявшихся для измерения размеров пузырьков и поровых каналов. A) Скелет, сохраняющий топологию, с обозначенными красным узлами в местах пересечения ответвлений. B) Максимально вписанные сферы, применявшиеся для расчёта объёма пузырьков. C) Максимально вписанные сферы, применявшиеся для расчёта диаметра поровых каналов. Толщина стенок была тоже определена с помощью максимально вписанных сфер. (Изображение J. Fife / PSI; D. Baker / McGill University.)Один из методов скелетизации, применявшихся для измерения размеров пузырьков и поровых каналов. A) Скелет, сохраняющий топологию, с обозначенными красным узлами в местах пересечения ответвлений. B) Максимально вписанные сферы, применявшиеся для расчёта объёма пузырьков. C) Максимально вписанные сферы, применявшиеся для расчёта диаметра поровых каналов. Толщина стенок была тоже определена с помощью максимально вписанных сфер. (Изображение J. Fife / PSI; D. Baker / McGill University.)К сожалению, учёные пока не знают, каким образом можно предсказать силу извержений. В то же время известно, что извержения вызываются быстрым расширением пузырей, которые формируются в воде и прочих летучих веществах, запертых в поднимающейся из глубин расплавленной породе. Этот механизм во многом схож с тем, что происходит, когда вы встряхиваете бутыль с газировкой, а потом откручиваете крышку. Насколько быстро или медленно вулкан и напиток расстанутся с газом, зависит от взаимодействия двух процессов — роста пузырьков и потери газа. Формирование и рост пузырьков и их влияние на свойства магмы — вот что стоило бы изучить ради предсказания масштабов извержений.

Международная исследовательская группа во главе с Доном Бейкером из Университета Макгилла (Канада) выяснила, что разница между слабыми и сильными извержениями коренится в первых десяти секундах роста пузырьков в расплавленной породе. Поэтому делается вывод о необходимости специальных систем мониторинга, которые смогут информировать о быстрых изменениях состава и движения газа в эти краткие, но важные моменты.181012sthelensИзвержение вулкана Сент-Хеленс в 1980 году (фото Austin Post, USGS)

Учёные наблюдали рост вулканических пузырьков в реальном времени путём нагрева водоносной магматической породы с помощью недавно разработанной лазерной системы швейцарского синхротрона SLS и рентгеновской 3D-микрофотографии образцов во время первых 18 секунд роста пузырьков и образования пены. С помощью полученных изображений удалось измерить количество и размер пузырьков, изучить геометрию связей между ними, а также вычислить, насколько быстро газ выходил из образца и как падала сила пены.

Оказалось, что поначалу в каждом кубическом сантиметре возникали тысячи маленьких пузырьков, которые очень быстро сливались в пену из крупных пузырей. Чем выше была потеря газа, тем сильнее снижалась сила пены. И всё это за 15 секунд.

Затем учёные выяснили, что даже небольшого количества воды в расплавленной породе достаточно, чтобы вызвать разрушительное извержение. В большинстве случаев газ выходит слишком быстро, приводя к незначительным извержениям, но иногда скорость образования пузырьков очень велика или условия таковы, что они не могут слиться в пену, и тогда случается катастрофа.

Это маленький, но важный шаг на пути к предсказанию характера извержений.

Результаты исследования опубликованы в журнале Nature Communications.

 


 

Источник: КОМЬЮЛЕНТА


 

 

 

Всего 41 тыс. лет назад стрелка компаса на нашей планете показала бы на юг — как на Марсе сейчас. Учёные из Гельмгольцовской ассоциации германских исследовательских центров (точнее, из входящего в неё Центра наук о Земле) сделали именно такой вывод после изучения проб донных осадков Чёрного моря.

Последняя инверсия магнитного поля Земли была гораздо позже, чем принято думать. (Здесь и ниже иллюстрации Norbert R. Nowaczyk / GFZ.)Последняя инверсия магнитного поля Земли была гораздо позже, чем принято думать. (Здесь и ниже иллюстрации Norbert R. Nowaczyk / GFZ.)Тогда на планете был ледниковый период, и наличное человечество больше увлекалось выживанием, нежели разработкой всяких там компасов. Поэтому до разрыва шаблонов дело так и не дошло.

Но, строго говоря, ещё не поздно. Исследователи под руководством Норберта Новачика и Хельге Арца обнаружили, что скорость смены магнитных полюсов Земли тогда была просто рекордной. Инверсии магнитного поля в истории планеты, безусловно, случались, но никакой закономерности в их смене замечено не было: то десятки миллионов лет ничего, то следуют друг за другом каждые несколько десятков тысячелетий. Однако до этого открытия считалось, что в последний раз магнитные полюса менялись местами 780 тыс. лет назад, а длилось изменение 1 200–10 000 лет. Заметим также, что мнения учёных по этому вопросу расходятся, равно как и намагниченность тогдашних осадочных пород в разных точках планеты.

Но, оказывается, 41 тыс. лет назад всё было не так. «Геометрия поля инвертированной полярности, линии которого указывали в прямо противоположном нынешней конфигурации направлении, существовала всего 440 лет и была связана с магнитным полем, которое по силе составляло четверть нынешнего, — объясняет Норберт Новачик. — Собственно изменение полярности длилось лишь 250 лет. В геологических временных масштабах это очень быстро». И действительно: если в 2009 году скорость движения северного магнитного полюса составила 64 км/год, то за 1 000 лет даже при постоянно изменяющемся направлении движения он может переместиться, скажем, в Антарктиду. Но за 250 лет?!Кроме резкого изменения температуры в Гренландии, никаких катастрофических последствий ни для климата, ни для биоразнообразия ослабление магнитного поля и извержение супервулкана почему-то не имелиКроме резкого изменения температуры в Гренландии, никаких катастрофических последствий ни для климата, ни для биоразнообразия ослабление магнитного поля и извержение супервулкана почему-то не имели

Самое интересное в другом: по всем расчётам выходит, что за эту четверть тысячелетия магнитное поле было в двадцать раз слабее нынешнего. Компьютерной индустрии повезло: развивайся она в ту эпоху, ей было бы суждено навеки остаться ламповой, потому что уровень космической радиации, попадающей на поверхность Земли, страшно усложнил бы работу неэкранированных транзисторных микросхем.

В результате описанных драматических событий пик радиоактивного бериллия-10 в пробах льда того времени не заставил себя ждать. То же, разумеется, относится и к углероду-14.

Кроме того, изучение проб показало, что 39 400 лет назад, то есть близко к смене магнитного поля, произошли иные катаклизмы — скажем, извержения супервулкана в Италии, вынесшие в атмосферу 350 км³ пепла. Разумеется, это вызвало климатические колебания, следы которых отмечают и немецкие учёные. Правда, они имели не слишком глубокое влияние в сравнении с другими факторами, воздействовавшими на погоду в ту эпоху.

Но есть и другие вопросы. Вспомним о гипотезе, утверждающей, что во время смены магнитных полюсов магнитное поле Земли так слабо, что резко выросшая радиация должна серьёзно навредить всему живому и привести к куда более заметным последствиям. Так, утверждалось, что, случись такое в наши дни, человечество испытало бы глобальную катастрофу, а может, и кануло бы.

И наконец. В качестве общего места часто утверждается, что магнитосфера обеспечивает защиту, без которой жизнь на Земле не могла бы существовать. Мол, Марс, магнитное поле которого очень мало, потерял значительную часть своих бывших океанов и атмосферы частично из-за прямого воздействия солнечного ветра, уносившего их в космос (правда, с Луной, Меркурием и многими другими было почему-то наоборот).

Как всё это совместить с 250-летним двадцатикратным падением уровня магнитного поля, которое не привело ни к каким массовым вымираниям видов? Более того, обычно на магнитном экваторе напряжённость магнитного поля планеты вдвое меньше, чем на полюсах, и в 1,5 раза — чем «в среднем по больнице». Где же следы гибели видов в его районе в условиях тридцатикратно ослабленного поля? Ведь, среди прочего, здесь проживали десятки поколений Homo Sapiens — существ, считающихся весьма уязвимыми к радиации…

Соответствующее исследование опубликовано в журнале Earth and Planetary Science Letters.

 


 

Источник: КОМПЬЮЛЕНТА


 

 

 

12 октября возобновилась программа НАСА Operation IceBridge, и исследователи всего мира устремили свои взоры на шельфовый ледник Пайн-Айленд в Антарктиде, где находится крупный разлом, измеренный в ходе прошлогодней кампании.

Безоблачное небо позволило спутнику Terra запечатлеть разлом 12 октября 2012 года с помощью инструмента MODIS. (Изображение NASA Goddard MODIS Rapid Response Team.)Безоблачное небо позволило спутнику Terra запечатлеть разлом 12 октября 2012 года с помощью инструмента MODIS. (Изображение NASA Goddard MODIS Rapid Response Team.)Эта трещина длиной около 30 км знаменует собой начало процесса создания массивного айсберга. В 2001 и 2007 годах от ледника Пайн-Айленд уже откалывались большие плавучие горы, но лишь в 2011-м удалось как следует произвести все измерения с воздуха.Изображение, полученное посредством радара с синтезированной апертурой со спутника TerraSAR-X 14 сентября. Изменений с тех пор не замечено. (Изображение German Aerospace Center.)Изображение, полученное посредством радара с синтезированной апертурой со спутника TerraSAR-X 14 сентября. Изменений с тех пор не замечено. (Изображение German Aerospace Center.)

Несмотря на трещину, шельфовый ледник оставался устойчивым в течение кампании 2011 года и пребывает таковым по сей день. Учёные продолжали следить за ним с помощью различных спутниковых инструментов. Предлагаемые вашему вниманию изображения демонстрируют изменения в разломе, произошедшие за последние месяцы и выявленные приборами MODIS американских космических аппаратов Aqua и Terra, а также радаром с синтезированной апертурой немецкого зонда TerraSAR-X.

 Немецкий спутник TerraSAR-X получил эти изображения с октября 2011 года по 14 сентября 2012Немецкий спутник TerraSAR-X получил эти изображения с октября 2011 года по 14 сентября 2012


 

Источник: КОМПЬЮЛЕНТА


 

Исследователи из Саутгемптонского университета (Великобритания) обнаружили повторяющийся спусковой механизм самых крупных взрывных извержений вулканов на Земле.

Вулкан Лас-Каньядас (фото Barry Marsh)Вулкан Лас-Каньядас (фото Barry Marsh)Вулканическая кальдера Лас-Каньядас на Тенерифе (Канарские острова) произвела по крайней мере восемь сильных извержений в течение последних 700 тыс. лет. В результате колонны извержений превышали 25 км в высоту, разбросав пирокластический материал более чем на 130 км вокруг. Даже самый слабый из этих катаклизмов по количеству выброшенного материала более чем в 25 раз превышал извержение исландского вулкана Эйяфлатлайокудль 2010 года.

Анализ магматических образований, сформированных накоплением кристаллов в магме и обнаруженных в пирокластических отложениях, показал, что предвулканическое смешивание в магматическом бассейне, где более старая и более прохладная магма смешивается с более юной и горячей, выступает в роли триггера крупномасштабных извержений.

Эти образования хранят образцы финальной магмы, какой она была непосредственно перед извержением, и могут рассказать обо всех изменениях, происходивших в вулканическом очаге, вплоть до взрыва.

Ведущий автор работы Рекс Тейлор поясняет: «Эти зёрна особенные, потому что их выбросило из магматического очага прежде, чем они стали абсолютно твёрдыми. В тот момент они были мягкими, как будто их скатали из грубого влажного песка. Края кристаллов в этих образованиях выросли из совсем другой магмы, а это значит, что активное смешивание имело место непосредственно перед извержением».Схема механизма, раз за разом приводившего к извержениям (изображение Tom Gernon)Схема механизма, раз за разом приводившего к извержениям (изображение Tom Gernon)

Соавтор Том Джернон отмечает также: «Само присутствие мягких зёрен в пирокластических отложениях говорит о том, что во время извержения магматический бассейн пустеет и разрушается, создавая кальдеру».

Вулкан Лас-Каньядас включён Международной вулканологической ассоциацией в число объектов, достойных особого исследования как источник крупных, разрушительных извержений вблизи населённых районов. Его изучение может дать неоценимые сведения для оценки возможности будущих извержений, способных не только накрыть Тенерифе, но и нанести ущерб экономике всей Европы.

Результаты исследования опубликованы в журнале Scientific Reports.

 


 

Источник: КОМПЬЮЛЕНТА


 

Два сильных землетрясения, произошедших в Индийском океане 11 апреля 2012 года, могут сигнализировать о последнем этапе формирования новой границы между литосферными плитами.

В апреле 2012-го в Индо-Австралийской платформе одновременно разорвались по крайней мере четыре разлома, в результате в течение двух часов случились два землетрясения магнитудой выше 8,0. (Красные звёзды указывают на эпицентры.) (Изображение Keith Koper / University of Utah Seismograph Stations.)В апреле 2012-го в Индо-Австралийской платформе одновременно разорвались по крайней мере четыре разлома, в результате в течение двух часов случились два землетрясения магнитудой выше 8,0. (Красные звёзды указывают на эпицентры.) (Изображение Keith Koper / University of Utah Seismograph Stations.)Геологический стресс, раздирающий Индо-Австралийскую платформу, скорее всего, и стал причиной землетрясений магнитудой 8,6 и 8,2, которые прошли вдоль многочисленных разломов. Толчки продолжались в течение шести дней после этого.

Свои соображения на этот счёт специалисты изложили в журнале Nature в трёх статьях.

Гипотеза о разрушении Индо-Австралийской плиты существует с 1980-х годов. Землетрясения 11 апреля стали наиболее ярким свидетельством правоты сейсмологов, подчёркивает Маттиас Делеклюз из Высшей нормальной школы Парижа (Франция), ведущий автор первой статьи.

Согласно преобладающей теории тектоники плит, Индо-Австралийская платформа начала деформироваться около 10 млн лет назад. Дело в том, что она продвигается на север, но её тормозит Евразийская плита. В ходе столкновения не только создаются Гималаи, но и замедляется индийская часть плиты. Между тем на последнюю наседает австралийская часть, отсюда и напряжённость.

Группа г-на Делеклюза выявила стресс при моделировании, выполненном незадолго до землетрясений 2012 года. Учёные обнаружили, что два предыдущих толчка близ восточной границы плиты (землетрясение магнитудой 9,1 в 2004 году, вызвавшее катастрофическое цунами, и ещё одно, 2005 года), вероятно, стали непосредственной причиной недавних событий, но сами по себе они не могли вызвать последующие толчки. Должен быть какой-то дополнительный источник стресса. По всей видимости, те землетрясения лишь усилили напряжение в средней области платформы.

Большинство крупных землетрясений происходит в том случае, если две плиты, сталкиваясь, заходят одна за другую. Напротив, когда платформы или их части скользят горизонтально вдоль линии разлома, это обычно приводит к сдвиговым толчкам поменьше. Однако первое из землетрясений 11 апреля бросило вызов теории, оказавшись крупнейшим сдвиговым землетрясением в истории наблюдений и одним из сильнейших, произошедших вдали от границ плит.

Во второй статье исследователи сообщают о том, что в ходе первого из землетрясений 11 апреля сброс напряжения, накопленного во внутренней части плиты, привёл к формированию никогда прежде не наблюдавшейся картины разломов. В отличие от большинства землетрясений, проходящих по одному разлому, этот разрыв охватил целых четыре, один из которых сдвинулся на 20–30 м.

Предыдущие работы уже выявили множественные сдвиги в результате землетрясения магнитудой 8,6, но в мельчайших деталях последние до сих пор не рассматривались.

Третья статья посвящена не самим землетрясениям, а их последствиям. Учёные обнаружили, что в течение шести дней после этого события землетрясения силой 5,5 и больше случались почти в пять раз чаще обычного, причём прокатились по всему миру, хотя афтершоки, как правило, ограничиваются непосредственной близостью от главного эпицентра.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Дельфины смотрят на мир так же, как это делают люди

21-01-2014 Просмотров:5242 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Дельфины смотрят на мир так же, как это делают люди

Афалина (большой дельфин) использует слуховую (или звукоотражательную) информацию для общения в водной среде, и многие исследования описывали эти  их эхолокационные  способности. Однако, проводилось совсем немного системных исследований их визуального восприятия мира.  АфалиныУченые из Университета...

Восстановлена ДНК пещерного медведя

17-09-2013 Просмотров:5962 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Восстановлена ДНК пещерного медведя

Митохондриальную ДНК пещерного медведя, жившего 300 тысяч лет назад на территории современной Испании, восстановила международная группа ученых. Успех секвенирования обусловил новый метод, позволяющий "склеивать" молекулы наследственности из коротких обрывков. Пещерный медведь Продвинутую...

Три белка делают пчелу королевой

20-11-2011 Просмотров:10973 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Три белка делают пчелу королевой

Ученые поняли, как именно из личинки пчелы развивается пчелиная матка. Они выявили все белки, участвующие в ее «короновании». Королева (справа) вырастает на другом корме, чем рабочая пчела (слева)В улье медоносной пчелы...

Охотясь под водой, пингвины переключаются на бескислородное дыхание

13-05-2011 Просмотров:9260 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Охотясь под водой, пингвины переключаются на бескислородное дыхание

При длительных подводных погружениях пингвины не тратят весь запасённый кислород. Вместо этого они переводят мускулатуру на особый, молочнокислый способ получения энергии, поэтому находящийся в крови и лёгких кислород достаётся другим...

2.8. Животный мир триасового периода

21-03-2013 Просмотров:32707 Животные (Animalia) Антоненко Андрей - avatar Антоненко Андрей

2.8. Животный мир триасового периода

Оглавление 1. Общие сведения о животных 1.1. Разделение классификации животных 2. Появление и эволюция животных 2.1. Протерозой. Довендская биота. Животный мир вендского периода (эдикария) 2.2. Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв 2.3. Животный мир ордовикского периода 2.4. Животный мир силурийского периода 2.5. Животный мир...

top-iconВверх

© 2009-2018 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.