Мир дикой природы на wwlife.ru
Вы находитесь здесь:Разное>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Короткая последовательность ДНК превращает бактерии, живущие в нематодах, в грозное биологическое оружие — а потом вновь делает из них кротких симбионтов. Такой же механизм может работать у кишечных патогенов, которые в мирной форме способны переждать лечение антибиотиками.

Нематоды Heterorhabditis bacteriophora с агрессивной формой бактерии внутри (фото авторов исследования)Жизненный цикл нематоды Heterorhabditis bacteriophora мог бы стать сюжетом для эффектного фильма ужасов. Нематоды выводятся из отложенных яиц, но у H. bacteriophora детёныши иногда не дожидаются этого момента и выходят из яиц прямо в утробе матери. Родитель погибает, а потомство, роясь в его теле, находит особые полости, заполненные бактериями Photorhabdus luminescens. Бактерии переходят во владение детёнышей и на какое-то время засыпают.

Маленькие нематоды затем устремляются на поиски пищи. Блуждая в почве, они находят личинку какой-нибудь моли и проникают внутрь — либо через естественные отверстия, либо попросту прогрызая себе ход в теле жертвы. Оказавшись на месте, они выплёвывают бактерии, которых взяли в теле матери. Но теперь эти бактерии разительно отличаются от себя прежних: они стали в несколько раз больше, из бесцветных превратились в красных и выделяют токсин, убивающий личинку. Какое-то время нематоды и бактерии питаются общей жертвой; бактерии при этом помогают нематодам усваивать питательные вещества. Но однажды бактерии дают сигнал червям размножаться — и цикл повторяется.

Об этом своеобразном сотрудничестве известно давно, и P. luminescens давали разные остроумные имена, вроде «бактерия Халк» или «бактерия Джекилл-и-Хайд». Но механизм, позволяющий микробам переходить из одной формы в другую, оставался загадкой. Считалось, что мирная форма существует исключительно в теле нематоды матери, а потом, повинуясь некоему сигналу, переходит в «Халк-форму», чтобы помочь справиться с жертвой. Исследователи из Мичиганского университета (США) выяснили, что обе формы существуют внутри нематод одновременно и переключения между ними происходят спонтанно.

В статье, опубликованной в журнале Science, исследователи описывают относительно короткую регуляторную последовательность в ДНК бактерий, названную madswitch. Если этот регуляторный участок отключить, никаких превращений ни в «Халка», ни обратно не будет. При этом черви держат запас и тех и других — на случай охоты и на случай размножения, поскольку агрессивная форма не может успешно закрепиться в организме потомства.

Авторы работы полагают, что такой же механизм есть и у бактерий кишечной микрофлоры человека. Во всяком случае последовательность ДНК, чрезвычайно напоминающая madswitch, присутствует у кишечной палочки, которая может мирно жить у нас в кишечнике, а может дать начало тяжёлому заболеванию. Точно так же способны вести себя бактерии рода Сальмонелла или знаменитый метициллин-резистентный золотистый стафилококк.

Подобная «двуликость» помогает бактериям избежать гибели: пассивная миролюбивая форма P. luminescens более устойчива к антибиотикам, и, возможно, патогенные желудочно-кишечные бактерии выживают аналогичным образом, превращаясь на время в невинную микрофлору.

 


Источник: КОМПЬЮЛЕНТА

 

После гона самцы серны оказываются с истощёнными энергетическими запасами, и в случае инфекции их иммунитет не может справиться с болезнью. Поэтому дольше живут те самцы, иммунная система которых более совершенна.

Обычно у млекопитающих самки живут дольСамцы серны доживают до преклонного возраста, только если им повезло с иммунными генами. (Фото mk_lynx.)ше самцов. Это объясняют тем, что последние более агрессивны и чаще подвергают себя стрессу, защищая территорию или сражаясь за самку. Истощённые борьбой друг с другом самцы оказываются беззащитными перед болезнями. Но, как показали исследователи из Ветеринарного университета Вены (Австрия), существуют эволюционно-генетические механизмы, которые до какой-то степени предохраняют самцов от слишком ранней смерти в связи с жизненными стрессами.

Учёные обратили внимание на различия в генах самцов и самок серны. Эти копытные живут в дикой природе от 16 до 20 лет. Но редкий самец переваливает за 11-летний возраст: после этого рубежа смертность резко возрастает. Особенно хорошо это заметно среди животных, обитающих в Восточных Альпах. Время от времени местных серн накрывает волна чесотки, которая в первую очередь губит взрослых самцов. Происходит это потому, что во время гона самцы расходуют энергетические запасы, и, когда приходит болезнь, у иммунной системы просто нет ресурсов, чтобы с ней бороться.

Как пишут исследователи в журнале BMC Evolutionary Biology, к концу зимы жировые запасы взрослых самцов серн истощаются на шесть недель раньше, чем у самок и молодых, неполовозрелых самцов.

Смертность среди взрослых самцов была бы ещё выше, если бы не одна генетическая уловка. Учёные обнаружили, что в тех районах, где случаются эпидемии чесотки, старые самцы обладают двумя разными копиями одного из генов главного комплекса гистосовместимости (МНС). Этот комплекс отвечает за распознавание инфекционных агентов, и чем больше патогенов он может распознать, тем выше у особи шансы на выживание. Самцы с одинаковыми копиями иммунного гена (гомозиготные по этому гену) не могли быстро распознать и избавиться от болезни, а потому умирали в первую очередь. У самцов же с разными вариантами этого гена иммунитет распознавал больше вариантов инфекции, оттого выживаемость таких особей повышалась.

Такой отбор в пользу разнообразия иммунных генов происходил только среди самцов, у самок никакого перевеса в пользу гетерозиготности по генам МНС не было. То есть это прямое следствие брачной конкуренции самцов. Главное, чтобы эволюция тут не перестаралась и не снабдила самцов серн слишком активным иммунитетом, так как в этом случае иммунная система может нанести вред самому организму.


Источник: КОМПЬЮЛЕНТА


Воскресенье, 13 Май 2012 10:42

Как плавают бактерии без жгутиков

Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.

Бактерии рода Synechococcus (фото yundaga)Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.

Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте PLoS ONE, американские биофизики утверждают, что разгадали эту загадку. В своей модели они ориентировались на другую безжгутиковую бактерию — Myxococcus xanthus. Это почвенная бактерия, которая перемещается скольжением по твёрдой поверхности. Через всю её клетку тянется белковая спиралеобразная конструкция, упирающаяся в клеточную мембрану. Специальные белковые моторы путешествуют по спирали и, наталкиваясь на клеточную мембрану, заставляют спираль проворачиваться. По мембране от переднего конца к заднему пробегает волна, которая и заставляет клетку двигаться.

У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.

Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.

Внутренний белковый винт у бактерии Myxococcus xanthus (сверху) и у Synechococcus (снизу) (рисунок авторов исследования)


Источник: КОМПЬЮЛЕНТА


Городские вороны могут запоминать знакомые голоса людей и птиц других видов.

Приспосабливаясь к городскому окружению, чёрные вороны научились различать людей и других птиц по голосам. (Фото willbury.)Врановые всегда были излюбленным объектом для зоологов, исследующих когнитивные способности животных. В последнее же время особенно часто появляются работы, посвящённые умению этих пернатых интеллектуалов запоминать и узнавать внешность и голоса людей и своих сородичей. В новой статье, написанной сотрудниками Венского университета (Австрия), сообщается, что врановые могут помнить не только внешность, но и индивидуальные голоса людей, а также других птиц, с которыми им приходится делить территорию.

Своё внимание исследователи сосредоточили на черной вороне, привычной обитательнице городов. (Подвид этой вороны с серым оперением можно увидеть повсеместно в европейской части России.) По словам Клаудии Вашер, одного из соавторов статьи в Animal Cognition, до сих пор зоологи изучали преимущественно внутривидовую коммуникацию птиц. В городах же воронам приходиться жить бок о бок с галками, сороками, чайками — не говоря уже о человеке. Одни приходят покормить птиц, другие, наоборот, едва ли не охотятся на них. Логично было бы предположить, что вороны со временем научились отличать хороших людей от плохих. Но каким образом они могут это делать?

В ходе эксперимента одни те же люди изо дня в день общались с несколькими воронами: кормили, разговаривали и т. д. Затем сделали запись одного и того же слова, произнесённого людьми, которых птицы знали, и незнакомцами. Когда птицы слышали запись «чужого» голоса, они поворачивались в ту сторону, откуда исходил звук, и пытались найти говорящего. Вороны концентрировали внимание на источнике незнакомого звука, стараясь оценить его потенциальную опасность. Знакомые же голоса птиц не беспокоили.

Этот же эксперимент повторили с участием галок вместо человека. Вместе с воронами жили несколько галок, чьи крики, которыми они приветствуют друг друга, были тоже записаны на плёнку. Когда воронам прокрутили записи голосов галок-сожительниц и незнакомых галок, то они, наоборот, с бόльшим вниманием реагировали на знакомые голоса. В этом, по мнению зоологов, проявляется межвидовое взаимодействие: вороны реагируют на голоса старых друзей, хотя бы и другого вида. Вороны, сталкиваясь с трудностями, обычно ищут помощи у других, но для этого им нужно знать, к кому обратиться. Видимо, межвидовые барьеры для ворон не проблема: в случае чего они легко могут позвать на помощь знакомую галку. Было бы любопытно узнать, могут ли вороны различать по голосам отдельных чаек или, скажем, воробьёв, но вряд ли чайку или воробья им узнать труднее, чем человека.


Источник: КОМПЬЮЛЕНТА


В окрестностях испанской Сарагосы обнаружены зубы древнего родственника гигантской панды.

Реконструкция José Antonio Peñas / SINCНеужели харизматичный китайский медведь в действительности появился на свет в Европе?

Вид, живший 11 млн лет назад во влажных лесах, получил название Agriarctos beatrix. Его отнесли к тому же подсемейству медвежьих — Ailuropodinae, к которому принадлежит современная большая панда. Если исследователи правы, то это самый древний представитель данной группы, известный учёным.

Хуан Абелла из мадридского Национального музея естественных наук (Испания) и его коллеги оценивают массу тела животного в 60 кг. Тем самым оно было меньше самого маленького из современных медведей (бируанга) и едва ли находилось поблизости от вершины пищевой цепи. Подобно нынешним пандам и небольшим медведям, оно, скорее всего, было отличным древолазом, избегая встреч с крупными хищниками: амфиционовыми и барбурофелидами.

Каким же образом предки больших панд добрались из тёплых и влажных регионов юго-западной Европы до Китая? Предыдущие исследования показывают, что медведи, как правило, довольно быстро размножаются, если позволяют условия окружающей среды, отмечает г-н Абелла. К тому же древнее европейское море Паратетис к тому моменту сильно сократилось в размерах и не могло стать серьёзным препятствием для путешествия на восток.

Геологическая формация, в которой были найдены зубы, изучена очень плохо и, скорее всего, в недалёком будущем даст немало интересного.

Результаты исследования опубликованы в журнале Estudios Geológicos.


Источник: КОМПЬЮЛЕНТА


Радужная форель — один из тех видов рыб, который, по мнению учёных, мог бы извлечь из глобального потепления какую-то пользу. (Фото And who am i.)Некоторые виды рыб способны извлечь пользу из глобального изменения климата, применяя разные температурные оптимумы для разных систем органов.

Принято думать, что глобальное потепление тяжело отразится на всех живых существах. Между тем всё может быть далеко не так однозначно. Исследователи из Университета Гётеборга (Швеция) полагают, что некоторые виды рыб могут получить преимущество от повышения температуры Мирового океана.

Рыбы, как известно, пойкилотермные животные, то есть температура их тела зависит от окружающей среды. Логично было бы предположить, что системы органов у рыб приспособлены работать в каком-то температурном диапазоне, и если верхняя граница его будет нарушена, то в теле рыбы начнутся множественные биохимические и физиологические изменения. Но они не обязательно будут отрицательными: по мнению учёных, повышение температуры может положительно сказаться на деятельности желудочно-кишечного тракта рыб.

Исследователи изучали, как будут влиять температурные перемены на разные виды пресноводных и морских рыб, таких как бычки-подкаменщики, осетры или форели. И пришли к выводу, что от повышения температуры явно плохо придётся оседлым видам вроде подкаменщиков: у них в первую очередь пострадает система кровообращения и газообмена. Но вот более подвижные виды, которые не только кочуют на большие расстояния, но и вообще ведут активный образ жизни, могут извлечь из потепления пользу. Перебегая из одного подводного участка в другой, такие рыбы могут использовать разные температурные оптимумы для разных систем организма. Кишечник рыб весьма чувствителен к перепадам температур, и они могли бы повышать или понижать интенсивность его работы, перемещаясь между более тёплыми и более холодными территориями. Например, ловить добычу в одном месте, а переваривать её — в другом.

Конкретная же выгода от температурных колебаний для каждого вида будет зависеть от того, какая система органов у него наиболее сильно зависит от окружающих условий. Кроме того, для тропических видов потепление может иметь иные последствия, чем для арктических. Так или иначе, зоологи полагают, что влияние глобального изменения климата требует более детального и индивидуального подхода, с учётом специфики отдельных видов: многие из них вполне могут поменять своё поведение так, чтобы не просто выживать в новых условиях, а ещё и извлекать из этого выгоду.


Источник: КОМПЬЮЛЕНТА

Сажа и тропосферный озон, выбрасываемые в основном в нижних и средних широтах Северного полушария, по-видимому, приводят к тому, что граница тропиков смещается к полюсу.

Тропический пояс планетыРанее было показано, что разрушение стратосферного озона является основным фактором расширения тропиков в Южном полушарии.

Роберт Аллен из Калифорнийского университета в Риверсайде (США) и его коллеги напоминают, что неослабное расширение тропического пояса повлияет на крупномасштабную атмосферную циркуляцию, особенно в субтропиках и средних широтах. В частности, это выразится в том, что субтропики станут ещё суше.

Наблюдения показывают, что за десятилетие тропики расширились на 0,7˚. Исследователи сначала сравнили данные наблюдений с показаниями климатических моделей, имитировавших 1979–1999 годы. Специалисты воспользовались набором из 20 моделей, объединённых проектом CMIP3.

Выяснилось, что последние примерно на треть недооценивают действительное расширение тропиков на 0,35˚ в Северном полушарии. Но когда при моделировании учли загрязнение атмосферы сажей и тропосферным озоном, показатели стали более точными.

Чтобы застраховаться от ошибки, исследователи расширили временной охват моделирования до 1970–2009 годов и получили такой же результат: без сажи и тропосферного озона компьютер недооценивал расширение тропиков на треть, а при добавлении этих факторов выдавал более точные данные.

У учёных не осталось сомнений, что наряду с парниковыми газами сажа и тропосферный озон активно нагревают тропики, поглощая солнечное излучение. Поскольку эти загрязнители задерживаются в атмосфере сравнительно недолго — всего одну–две недели — они концентрируются в местах наиболее активных выбросов, то есть в нижних и средних широтах Северного полушария, нагревая их особенно сильно.

По мере продвижения тропиков к полюсам вместе с ними движутся ветры, осадки и другие аспекты атмосферной циркуляции. «Некоторые климатические модели предсказывают устойчивую засуху в субтропиках, которая сопровождается увеличением количества осадков в более высоких широтах, — говорит г-н Аллен. — Например, южная часть Соединённых Штатов станет суше, поскольку штормовые системы сдвинутся на север».

Сажа представляет собой мельчайшие частицы углерода, образующиеся при сжигании биомассы и в результате неполного сгорания ископаемых видов топлива. Основная масса сажи производится в Северном полушарии — в Юго-Восточной Азии. Это относится и к тропосферному озону — вторичному загрязнителю, образующемуся в результате реакции летучих органических соединений с солнечным светом.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


Первые биологические часы появились вместе с фотосинтезом и подчинялись не смене дня и ночи, а изменениям концентрации кислорода в клетке.

Сине-зелёные водоросли, стоявшие у истоков фотосинтеза, возможно, были ещё и первыми, кто изобрёл биологические часы. (Фото Marco Spiller.)Появление биологических часов у живых организмов случилось из-за накопления в атмосфере кислорода — к такому выводу пришли исследователи из Кембриджского университета (Великобритания). Статью, в которой они рассказывают, как доискивались происхождения суточного ритма, учёные опубликовали в журнале Nature. Биологические часы, как известно, есть почти у всех живых организмов, от одноклеточных водорослей до человека. Они выставлены на 24-часовой цикл, который может поддерживаться даже при отсутствии внешней коррекции в виде смены дня и ночи. Однако солнечный свет служит ключевым регулятором циркадного ритма, и гены, управляющие этим ритмом, обычно учитывают показания «оптических датчиков», то есть специальных фоторецепторов в глазу.

Несмотря, однако, на всеобщность, у разных организмов суточные ритмы устроены по-разному. То есть гены циркадного ритма у растений, дрозофил и, например, млекопитающих различаются довольно сильно. В связи с этим исследователи полагают, что биологические часы возникали в ходе эволюции неоднократно (по меньшей мере раз пять) у разных групп организмов. Но на этот раз учёные обратили внимание на гены пероксиредоксинов — ферментов, которые есть опять же почти у каждого живого существа на планете. Эти белки участвуют в обезвреживании опасных кислородных радикалов, образующихся в результате клеточного дыхания. Год назад эта же группа исследователей из Кембриджа сообщала, что уровень пероксиредоксинов в клетках морских водорослей и эритроцитах человека меняется по одинаковому ритму. И ритм этот, как легко догадаться, 24-часовой.

В новой работе учёные проанализировали динамику пероксиредоксинов среди более широко набора организмов: уровень ферментов измеряли у мышей, дрозофил, растений, бактерий и архебактерий. Оказалось, что активность генов пероксиредоксинов не зависит от солнечного света, без которого, как принято считать, биологические часы разлаживаются. Это навело исследователей на мысль, что пероксиредоксиновый ритм представляет собой какие-то другие, метаболические часы, не зависящие от остальных суточно-ритмических механизмов. Мутации, которые расстраивали обычный циркадный ритм, на колебаниях активности генов пероксиредоксинов никак не сказывались.

Вместе с тем учёные не считают, что метаболический и обычный световой суточные ритмы абсолютно независимы друг от друга. Вряд ли изменения в активности касаются только генов пероксиредоксинов; скорее всего, тут задействован ещё ряд ферментов, которые среди прочего могут выполнять связующую функцию между двумя системами суточного цикла. Однако специфика работы метаболических часов стала поводом для смелого предположения, что пероксиредоксины некогда были самыми первыми биологическими часами.

Вместе с «открытием» бактериями фотосинтеза 2,5 млрд лет назад им срочно понадобились системы, которые обезвреживали бы опасные продукты кислородных реакций. Появление фотосинтеза привело, как известно, к кислородной катастрофе, после которой те, кто не мог жить в новой атмосфере, вымерли или ушли в тень. Для реакции фотосинтеза необходим свет, но первоначально суточный ритм, по предположению учёных, подчинялся именно колебанию концентрации кислорода. И лишь потом биологические часы взяли за образец смену дня и ночи.


Источник: КОМПЬЮЛЕНТА


Чтобы получить наиболее эффектный узор, который отпугивал бы хищников, бабочки геликонии используют сложную эволюционно-генетическую технику обмена генами между видами.

Бабочка Heliconius melpomene melpomene (здесь и ниже фото авторов исследования).Геликонии были открыты в американских тропиках и субтропиках в прошлом веке и с тех пор служат благодарным объектом в исследованиях генетиков. Эти бабочки несут на крыльях характерный чёрно-красный узор, который должен напоминать хищникам о ядовитости. Узор разнится от вида к виду, и многообразие вариантов окраски делает геликоний удобным объектом для эволюционно-генетических штудий.

Очевидно, в ходе эволюции задачей бабочек было научиться как можно более эффективно отпугивать хищников. Чтобы добиться этого, геликонии используют довольно необычный метод. В статье, опубликованной в журнале Nature, международная группа исследователей сообщает о «межвидовом промискуитете», посредством которого бабочки получают возможность выбрать из множества вариантов окраски самый пугающий. Учёные проанализировали геномы видов с повторяющимися мотивами в узорах на крыльях. Оказалось, что сходство в окраске сопровождается сходством геномов: целые комплексы генов, отвечающих за распределение пигмента, оказались одинаковыми у нескольких разных видов.

Бабочка Heliconius melpomene amaryllisПричиной этого, по словам учёных, может быть только интрогрессия, или межвидовая гибридизация. Мы привыкли к тому, что при межвидовом скрещивании не получается плодовитого потомства: первое поколение гибридов оказывается последним. Но в некоторых случаях это правило может не соблюдаться, если гибридный потомок будет скрещиваться с представителями родительских видов. В результате родительский вид обогатится вариантами генов, принадлежащими другому виду, тому, с которым они до этого дали жизнь гибриду.

Такой путь обмена генами — явление чрезвычайно редкое, особенно у животных (у растений интрогрессия случается чаще). Обычно изменения в признак вносятся посредством мутаций и последующего отбора наиболее удачного варианта. Но этот способ слишком медлен. Обмен же генами и блоками генов между видами позволяет искать удачные варианты признака гораздо быстрее. Очевидно, бабочкам геликониям удалось овладеть этой сложной, но весьма эффективной эволюционно-генетической техникой.


Источник: КОМПЬЮЛЕНТА


Исследователи обнаружили, что матричная РНК модифицирована ничуть не меньше, чем ДНК, причём модификации касаются важнейших генов, участвующих в развитии самых разных заболеваний, от рака до шизофрении.

Синтез белка на мРНК; нить мРНК окрашена красным, рибосомы — синим, растущие полипептидные цепи — зелёным. (Фото Dr Elena Kiseleva.)О том, что химические модификации ДНК или обслуживающих её белков влияют на активность генов, известно давно: это один из примеров эпигенетического кодирования. Но до сих пор в исследованиях эпигенетического кода не находилось места для РНК: исследователи были заняты ДНК и гистонами, упаковывающими ДНК в хромосому. Оттого результаты, полученные группой исследователей из Корнеллского университета (США), выглядят особенно интригующими.

Учёным удалось обнаружить многочисленные модификации в матричной РНК, и есть все основания полагать, что они вносят свой вклад в регуляцию генетической активности. Результаты исследования опубликованы в журнале Cell.

Модификация, о которой идёт речь в статье, превращает аденозин в N6-метиладенозин, то есть на букву А генетического кода в мРНК вешается метильная группа. По словам авторов работы, 20% мРНК человека несут эту модификацию, причём касается она самых разных генов. Следует сказать, что N6-метиладенозин в матричной РНК был обнаружен ещё в 1975 году, но тогда не было уверенности, что он принадлежит именно мРНК, что в ходе эксперимента к мРНК не примешались транспортная и рибосомная РНК, которые, в отличие от мРНК, модифицированы щедро и разнообразно. На этот раз исследователи сумели прочесть последовательность модифицированных мРНК и обнаружили в них копии самых разных генов, имеющих отношение ко множеству заболеваний, от рака до шизофрении.

Более того, удалось найти фермент, который может снимать эту модификацию с мРНК. Им оказался продукт гена FTO, мутации в котором часто бывают связаны с ожирением и диабетом. Причём к метаболическим расстройствам приводит именно гиперактивность гена FTO, поэтому исследователи делают вывод, что метилирование матричной РНК необходимо для поддержания правильного метаболизма. Что до фермента, который, наоборот, модифицировал бы мРНК, то его пока не нашли. Зато учёные узнали, где группируются модификации — преимущественно вблизи стоп-кодона. Вероятно, это как-то влияет на работу рибосом, хотя тут, как признаются авторы работы, остаётся только гадать: возможно, модифицированные основания служат, как и в ДНК, для привлечения каких-то регуляторных белков.

Метилирование мРНК было обнаружено у человека и мыши, причём его рисунок оказался довольно консервативным: в обоих случаях модификации происходили в сходных последовательностях. Хотя прямых доказательств тому, что метилирование мРНК влияет на активность белкового синтеза, пока не получено, исследователи не сомневаются, что так оно и есть. Возможно, это универсальный механизм регуляции генетической активности, подобный эпигенетическим модификациям ДНК. Если так, то с практической точки зрения биологи и медики получат дополнительный инструмент в борьбе со сложнейшими и тяжелейшими недугами: достаточно будет лишь притормозить или, наоборот, ускорить ферменты, занимающиеся модификациями мРНК, чтобы генетическая активность человека пришла в норму.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Птерозавры помогли цветам завоевать мир

18-07-2012 Просмотров:15684 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Птерозавры помогли цветам завоевать мир

 Недавно палеонтологи из Испании смогли разгадать загадку, решить которую оказалось не под силу даже Дарвину. Они выяснили, каким образом миллионы лет тому назад цветковые растения смогли быстро расселиться по всей...

Зоологи открыли новые виды мельчайших рептилий

18-02-2012 Просмотров:10311 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Зоологи открыли новые виды мельчайших рептилий

Группа немецких и американских учёных обнаружила на островах севера Мадагаскара четыре новых вида карликовых хамелеонов. Первооткрыватели считают, что эти ящерицы могут быть самыми маленькими рептилиями в мире. Как сообщает Wired, все...

Биологи раскрыли тайну муравьев, коллекционирующих "черепа" врагов

17-11-2018 Просмотров:2603 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Биологи раскрыли тайну муравьев, коллекционирующих "черепа" врагов

Безобидные рыжие муравьи, живущие в лесах Флориды, оказались тайными "охотниками за головами". Они убивают более крупных муравьев при помощи "плевков" кислоты и коллекционируют их черепа в своих муравейниках, пишет натуралист, опубликовавший статью в журнале Insectes Sociaux. Флоридский...

Ученые выяснили, как в Якутии появилось "кладбище мамонтов"

19-06-2024 Просмотров:435 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Ученые выяснили, как в Якутии появилось "кладбище мамонтов"

Скопление тысяч костей мамонтов, ранее найденных в арктической зоне Якутии, возникло благодаря людям, которые в древности активно использовали останки этих животных для собственных нужд – к такому выводу пришел коллектив...

Найдено одно из древнейших растений Северной Америки

02-12-2013 Просмотров:9421 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Найдено одно из древнейших растений Северной Америки

Несколько лет назад аспирант Мэрилендского университета (США) Натан Джад в плановом порядке изучал партию ископаемых растений из коллекции Смитсоновского музея естественной истории, и один экземпляр показался ему несколько необычным. Изображение Nathan...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.