Глубинные слои Земли содержат в себе примерно столько же воды, как и ее океаны, благодаря тому, что туда уже более трех миллиардов лет попадает кора со дна морей планеты, насыщенная влагой. К такому выводу пришли российские и зарубежные ученые, опубликовавшие статью в журнале Nature.
"Мы представили геохимические данные, указывающие на то, что цикл глобального погружения океанической коры в мантию начался гораздо раньше, чем считает большинство специалистов, и мог функционировать уже в течение первого миллиарда лет истории Земли", – отметил Александр Соболев из Института геохимии и аналитической химии РАН.
По мнению геологов, жизнь существует на Земле и отсутствует на Венере благодаря тому, что недра нашей планеты не стоят на месте, а постоянно "мигрируют" между ее поверхностью и глубинными слоями литосферы. Движение континентов, постепенное погружение их пород в глубины мантии и их последующее "всплытие" помогают Земле "сбрасывать" лишнее тепло и стабилизировать климат.
Этот процесс, как считают ученые, влияет не только на климат, но и на состав атмосферы и океанов Земли. Когда породы континентов погружаются вглубь мантии, они уносят с собой большие количества осадочных пород, содержащих различные газы, воду и другие летучие вещества. Они возвращаются к поверхности вместе с извержениями вулканов, что часто резко меняет состав воздуха и воды, и сильно влияет на земную жизнь.
К примеру, недавно Соболев и его коллеги обнаружили, что "всплытие" мантии в окрестностях современного Норильска привело к насыщению атмосферы большим количеством парниковых газов и "засеиванию" океанов нутриентами, ускоряющими рост микробов. Оба этих события, произошедшие примерно 255 миллионов лет назад, послужили "спусковым крючком" для Пермского вымирания, самого серьезного катаклизма в истории жизни на Земле.
Когда мантия Земли начала "дышать" и обмениваться газами и водой с поверхностью планеты, ученые пока не могут точно сказать. Часть геологов считает, что тектоника запустилась практически сразу после рождения нашего мира, около четырех миллиардов лет назад, а другие сомневаются в этом и предполагают, что это произошло около 2,5 миллиарда лет назад.
Как передает пресс-служба Российского научного фонда, Соболев и его коллеги нашли новые свидетельства в пользу первой гипотезы, изучая образцы древнейшей коры Земли, сформировавшиеся более 3,3 миллиарда лет назад в окрестностях ныне существующего городка Барбертон на востоке ЮАР.
Древняя океаническая кора, как объясняют авторы статьи, не полностью "растворяется" в глубинных слоях мантии. Самые тугоплавкие ее компоненты, представляющие собой одну из форм минерала оливина, сохраняются в виде микроскопических кристаллов, следы которых можно найти в определенных типах вулканических пород. Эти породы, так называемые коматииты, чаще всего встречаются в самых древних образцах коры Земли, так называемых "зеленокаменных поясах".
Первые исследования такого рода российские и зарубежные исследователи провели еще три года назад, изучив породы из Канады и ЮАР, сформировавшиеся 2,7 миллиарда лет назад. Эти замеры показали, что в самых глубинных слоях мантии скрывается огромное количество воды, сопоставимое по размерам с мировым океаном. Как предположили тогда ученые, она попала в мантию благодаря раннему запуску тектонических процессов.
Сейчас Соболев и его команда получили новые подтверждения этой гипотезы, изучая более древние образцы коматиитов из Южной Африки. Как и в 2016 году, ученые извлекли из них кристаллы оливина, расплавили их и измерили доли воды и церия, а также доли изотопов водорода.
Эти вещества, как отмечают геохимики, ведут себя одинаково при движении через литосферу Земли. По этой причине, избыток того или другого будет говорить о наличии больших запасов H2O или соединений редкоземельного металла в глубинных слоях мантии в тот момент, когда формировались эти кристаллы.
Как оказалось, избыток воды присутствовал и в этих образцах древних пород, что говорит о наличии огромных запасов влаги в глубинных слоях мантии Земли уже 3,3 миллиарда лет назад. Вкупе с избытком дейтерия, это означает, что круговорот пород между поверхностью и глубинными недрами литосферы начался почти сразу после рождения планеты, чтобы мантия успела насытиться нужным количеством воды."Механизм погружения измененной морской водой коры в мантию функционировал более 3,3 миллиарда лет назад. Это означает, что уже в первый миллиард лет существования Земли происходил глобальный оборот вещества, составляющий основу современной тектоники плит, а источником избытка воды в переходной зоне мантии был древний океан на поверхности планеты", – заключает ученый.
"Механизм погружения измененной морской водой коры в мантию функционировал более 3,3 миллиарда лет назад. Это означает, что уже в первый миллиард лет существования Земли происходил глобальный оборот вещества, составляющий основу современной тектоники плит, а источником избытка воды в переходной зоне мантии был древний океан на поверхности планеты", – заключает ученый.
Источник: РИА Новости
Океанические течения между Арктикой и Антарктикой не раз за последние 50 тыс. лет замедлялись и ускорялись, оказывая влияние на климат Земли. Причем изменение температуры происходило очень быстро, и многие из таких уроков прошлого могут быть полезны для научного прогнозирования ситуации на перспективу.
К такому выводу пришла международная группа ученых с участием специалистов Бернского университета.
Как отмечает этот университет на своем сайте, эксперты выясняли, как вела себя на протяжении примерно 50 тыс. лет в ледниковый период Атлантическая меридиональная опрокидывающая циркуляция (AMOC), которая посредством течения Гольфстрим обогревает Гренландию и Европу теплыми водами.
Как установили исследователи, Северная Атлантика посылает ответные сигналы Антарктике как через океаны, так и через атмосферу Земли. Причем океанический "маршрут" доставки сигнала оказывается существенно более длинным по срокам, чем атмосферный, и информация о потеплении или похолодании приходит из Северной Атлантики на Южный полюс через 200 лет после того, как произошло изменение температуры.
"Во время последнего ледникового периода AMOC была обычно очень слабой, и это создавало условия для распространения льда в регионе Северной Атлантики. Однако время от времени АМОС быстро и существенно усиливалась", - указывают исследователи. Ученые установили, что такие события приводили к резкому повышению температуры в Гренландии. В свою очередь, это быстро влияло на глобальные атмосферные условия - и тогда в ряде районов Антарктики становилось теплее, а в других холоднее. Затем, по прошествии примерно 200 лет, Антарктика испытывала на себе новое воздействие - связанное с постепенным понижением температуры океана в Северном полушарии.
"Наше исследование впервые детально продемонстрировало, как климат работает за пределами периодов, превосходящих сроки метеорологических наблюдений", - заявил Микаэль Сигл, эксперт-химик по вопросам окружающей среды Бернского университета. В проекте он участвовал в качестве специалиста по вулканической активности Земли.
В Антарктиде было изучено 1600 слоев со следами вулканических выбросов, сохранившихся в вечных льдах. "Благодаря этим геологическим горизонтам, мы смогли сопоставить почти 50 тысяч лет истории климата Антарктики с лентой времени и сравнить ее с историей Гренландии", - пояснил Сигл. Ученые сделали вывод, что в Гренландии температура могла повышаться на 10 - 15 градусов Цельсия в течение одного десятилетия - это происходило, когда Гольфстрим максимально ускорялся.
Исследователи обнаружили аналогию между состоянием климата Земли в далекую эпоху и сейчас. Наблюдения и моделирование ситуации свидетельствуют о том, что AMOC в настоящее время ослабевает. Иными словам, то, что происходило во время ледникового периода, может повториться - речь идет о резком изменении климата под воздействием замедления океанической циркуляции воды. Эксперты опасаются, что ослабление AMOC может в итоге привести к снижению мощи муссонов, которые "имеют фундаментальное значение для жизни миллиардов людей".
"Причина нынешнего ослабления AMOC - это глобальное потепление и поступление из Гренландии воды, образовавшейся в результате таяния льда", - резюмировал Сигл.
Загадочный "горб" на экваторе Луны указал на то, что Земля была лишена океанов из жидкой воды на протяжении первых 400-500 миллионов лет своего существования, что накладывает серьезные ограничения на время зарождения жизни, говорится в статье, опубликованной в журнале Geophysical Research Letters.
"Гидросфера Земли, если она и существовала в те времена, была полностью замороженной, в результате чего приливные силы практически не "тормозили" Луну. Причиной этого, как мы предполагаем, может быть то, что Солнце светило тогда не так ярко, как сегодня", — рассказывает Шицзе Чжун (Shijie Zhong) из университета Колорадо в Боулдере (США).
Последние 30 лет было принято считать, что Луна образовалась в результате столкновения Тейи, протопланетного тела, с "зародышем" Земли. Столкновение привело к выбросу материи Тейи и прото-Земли в космос, из этой материи и сформировалась Луна, что объясняет ее удивительное геологическое и химическое сходство с нашей планетой.
В первые эпохи своего существования Луна выглядела совсем не так, как сегодня – ее недра и поверхность были полностью расплавлены, она обладала экзотической сверхплотной атмосферой из паров кремния и металлов, и была расположена в 10 раз ближе к поверхности Земли, чем сегодня.
В последующие несколько миллионов лет, как сегодня считают ученые, Луна достаточно быстро удалялась от Земли в результате действия приливных сил, заняв примерно ту орбиту, на которой она находится сегодня. Впоследствии, когда Луна начала всегда смотреть на Землю только одной стороной, этот процесс резко замедлился и сейчас она "сбегает" от нашей планеты со скоростью примерно в 2-4 сантиметра в год.
Чжун и его коллеги раскрыли одну необычную деталь этого процесса, обратив внимание на самую загадочную черту Луны – ее необычный "горб", расположенный на экваторе спутницы Земли. Эта структура была открыта известным французским астрономом Пьером Лапласом два века назад, когда он заметил, что Луна "сплющена" примерно в 17-20 раз сильнее, чем на то указывает скорость ее вращения вокруг своей оси.
Сегодня ученые считают, что существование этой структуры указывает на то, что в далеком прошлом Луна вращалась значительно быстрее, чем сегодня. Американские планетологи попытались понять, как быстро "тормозила" Луна, изучив то, как устроен этот "горб" и попытавшись воспроизвести его рождение при помощи компьютерной модели Солнечной системы.
Эти наблюдения неожиданно показали, что общепринятые теории о быстром торможении Луны в первые годы ее существования были ошибочными – скорость вращения спутницы Земли оставалась высокой как минимум на протяжении первых 400 миллионов лет ее существования. В противном случае Луна всегда бы оставалась "жидкой" планетой или имела совершенно иную форму и размеры, нежели сегодня.
Подобный сценарий, как объясняет Чжун, возможен только в том случае, если Земля не была покрыта в то время океаном из воды, сопоставимым по размером с нынешней гидросферой планеты. Это означает, что воды в жидком виде на юной Земле не было – она или отсутствовала на ней в принципе и была принесена уже после формирования "горба" Луны, или же была полностью заморожена.
Подобные выводы ставят серьезные ограничения на время появления жизни на Земле и заставляют ученых сомневаться в недавних заявлениях геологов о том, что первые живые организмы могли возникнуть на нашей планете уже 4 миллиарда лет назад.
Источник: РИА Новости
Сегодня тот факт, что животные нуждаются в кислороде, чтобы жить, кажется очевидной истиной. Но относительный дефицит кислорода в древних океанах Земли помог развитию ранних морских существ, утверждает новое исследование.
«Кембрийский взрыв» — эволюционный скачок, произошедший около 540 миллионов лет назад и включающий в себя рождение большинства основных групп животных, известных сегодня, сопровождался значительным снижением уровня кислорода, — говорят результаты исследования. Они дают нам более полное представление о том, как именно в глубоком прошлом колебался уровень кислорода в океанах и атмосфере, и как он изменился так, чтобы эволюция не просто продолжалась, а еще и такими быстрыми (по геологическим меркам) темпами.
Тимоти Лионс, биогеохимик из Калифорнийского университета, Риверсайд, комментируя результаты исследования (в самом исследовании он не участвовал), сказал, что данная работа показывает, что времена с низким уровнем кислорода, можно сказать, «зарядили насос» для эволюции животных.
Сегодня, в зависимости от района, типичные поверхностные океанские воды состоят из 5,4-8 миллилитров растворенного кислорода на каждый литр морской воды. Но воды с низким уровнем (или почти отсутствующем) кислорода существуют — это так называемые «зоны минимального кислорода» (ЗМК). Таковыми являются некоторые места в восточной части Тихого океана. Там обитают мелкие животные, такие как нематоды и некоторые адаптировавшиеся к подобным условиям рыбы. Концентрации кислорода в этих районах могут составлять лишь около 1% от уровня поверхностных вод.
Лионс поясняет, что в некоторые древние эпохи, согласно другим недавним работам по океанической химии, морские животные жили в мирах с очень низким содержанием кислорода, и большая часть океана в эти периоды времени, вероятно, была как в современных ЗМК.
Палеонтологи Рейчел Вуд из Эдинбургского университета и Дуглас Эрвин из Смитсоновского института Национального музея естественной истории в Вашингтоне, округ Колумбия, решили изучить, как животное царство реагирует на эти низкие уровни кислорода. Они рассмотрели, как, исходя из летописи окаменелостей и из генетических данных, колебания концентрации кислорода коррелируют с появлением новых животных. Исходя из этого, они отметили три этапа, в которых кислород сначала опускался до критически низкой отметки, а затем снова поднимался, что приводило к увеличению животного разнообразия.
В древнейшей эволюционной истории животных, в период между 635 и 540 миллионами лет назад, в океане был повсеместно низкий уровень кислорода. В последующий, кембрийский период, начавшийся около 540 миллионов лет назад, появилось больше насыщенных кислородом вод. В это же время у животных появляются такие ключевые черты как сердце, центральная нервная система, пищеварительная система, а также скелет и конечности. По мере того, как уровни кислорода становились более высокими, группы с этими чертами размножались активнее, заполняя летопись окаменелостей тем, что теперь именуется «кембрийским взрывом». Но еще до самого взрыва, во время аноксических фаз, возникало много морфологической новизны, — объясняет Эрвин. Вероятно, это были маленькие и мягкотелые животные, которые существовали на обочине древних экосистем и которые практически не оставили никаких следов окаменелостей.
То же самое произошло в двух других, более поздних периодах. В конце кембрия океаны лишились кислорода на период от 3 миллионов до 4 миллионов лет. После такой «кислородной диеты», животная жизнь снова начала процветать, уже в так называемой ордовикской радиации. В течение этого периода произошло разрастание основных групп животных. Вуд замечает, что в этот период происходит увеличение разнообразия кораллов и губок.
Затем, около 252 миллионов лет назад, еще одно аноксическое событие привело к пермь триасовому вымиранию, самому большому массовому вымиранию в истории. Однако, по его окончанию, летопись окаменелостей снова показывает нам новые коралловые и губчатые виды, и животных — ихтиозавров, вымерших дельфиноподобных морских рептилий. Эти новые формы, вероятно, появлялись во времена с низким содержанием кислорода. Восстановление же уровня кислорода позволило им крайне быстро и успешно расплодиться, сообщают исследователи в «Биологических обзорах».
Ученые говорят, что результаты исследования не делают аноксию благоприятной для современных экосистем. Но в очень долгих временных масштабах это может привести к эволюции. «Раньше мы думали, что для того, чтобы дать эволюции совершить скачок, нужен пороговый уровень кислорода», — говорит Карл Симпсон, палеобиолог из Университета Колорадо в Боулдере, который не принимал участия в работе. «Но новое исследование говорит о том, что животный мир может диверсифицироваться и при крайне низком содержании кислорода».
Пока остается неизвестным, как именно времена с низким содержанием кислорода приводили к эволюции животных. Возможно, аноксия просто убивала более крупных и доминирующих животных, оставляя место для более мелких, давая последним захватить власть. Ответ непонятен, но, как объясняет Вуд, изучение того, как животные развиваются в современных ЗМК, может пролить некоторый свет.
Источник: PaleoNews.ru
Каждый слышал о глобальном потеплении, но не все представляют, чем оно может обернуться для планеты.
Эти карты показывают, что было бы, если бы растаяли все ледники на Земле.
Европа
|
Азия
|
Северная Америка
|
Южная Америка
|
Африка
|
Австралия
|
Антарктида |
|
Денис Хенинг (Dennis Höning) и Тилман Шпон (Tilman Spohn) из Германского аэрокосмического центра при Института планетологии в Берлине создали модель эволюции планеты с учетом влияния живых организмов на размер континентов и тектонику плит. Моделирование показало, что на безжизненной планете континенты занимали бы не более 30% поверхности, а то и гораздо меньше (сейчас — 40%). Ученые доложили свои результаты на ежегодной встрече Европейского геофизического общества, которая проходит в эти дни в Вене (Австрия), сообщает Science.
Размер и форма континентов до некоторой степени контролируется биосферой, полагают ученые. В частности, биосфера вырабатывает кислород и образует уникальную земную атмосферу, которая влияет на химические процессы на поверхности Земли — выветривание, эрозию горных пород. Земную кору преобразуют живые организмы, например, корни растений иногда проникают в горные породы, разрушая их, а микроорганизмы участвуют в преобразовании горных пород.
Ученые напоминают давно известный факт, что жизнь на Земле зародилась около 3,5 млрд лет назад, и примерно в это же время началось движение континентов — процесс, продолжающийся до сих пор. Но какая может быть связь между двумя процессами? Планетологи из Германии построили модель эволюции планеты и жизни на ней, и выяснили, что сначала, по мере сокращения выветривания и эрозии континенты остаются обширными, но со временем, если убрать из модели жизнь, континенты уменьшаются. Сейчас они занимают 40% поверхности планеты. Без биосферы в лучшем случае они занимали бы 30%, а в худшем — 10% поверхности Земли.
Исследователи предложили следующее объяснение влияния биосферы на тектонику плит: известно, что плиты с континентами сталкиваются друг с другом, после чего их массы опускаются вниз в мантию планеты, где и плавятся. Осадочный чехол на континентах содержит большое количество воды, до 40%, океаническая кора с ее осадками еще более насыщена водой, поскольку покрыта ею. Когда весь этот пропитанный водой материал попадает в мантию, он вызывает там кипение, что проявляется в виде мощного вулканизма и излияний лавы. Например, такого рода вулканизм существует в окраинных морях Дальнего Востока, в зоне Альпийского складчатого пояса. Запускается своего рода положительная обратная связь — больше воды попадает в мантию, сильнее бурлит мантия, мощнее вулканизм и резвее движутся плиты земной коры по планете.
Так вот, планетологи Хенинг и Шпон считают, что не будь биосферы, воды в мантию попадало бы меньше. А раз так, то в конечном счете размеры континентов сократились бы. Они полагают даже, что соотношение площади континентов и океанов можно считать одним из индикаторов для поиска обитаемых планет во Вселенной.
Подробнее: Научная Россия
Окисление океана стало одним из главных факторов Большого вымирания, случившегося на границе Пермского и Триасового геологических периодов, 252 млн лет назад. К таким выводам пришли ученые из Эдинбургского университета (Шотландия) под руководством получающего докторскую степень Мэтью Кларксона (Matthew Clarkson). Их научную статью об этом, опубликованную в журнале Science, коротко пересказывает газета The Independent.
Исследования, проведенные шотландскими учеными в пустыне в ОАЭ, показали, что в слоях горных пород, которые сформировались на морском дне 252 млн лет, содержится гораздо больше изотопа бора, чем в более молодых и более старых слоях. Это отражает рост уровня кислотности (pH) древней воды. Иначе говоря, именно в указанное время кислотность вод древних океанов резко повысилось.
Почему же это произошло? Доказано, что причиной послужили извержения супервулканов, так называемых «Сибирских траппов», которые продолжались около миллиона лет и привели к выбросу в атмосферу гигантских объемов углекислого газа. По этой причине сначала в древних океанах стало не хватать кислорода, что уже нанесло по живым существам сильный удар, а потом еще и повысилась кислотность воды — за счет того, что океан начал поглощать из атмосферы углекислоту. Это «добило» морскую фауну: согласно палеонтологическим данным, тогда погибло до 96% всех видов морской флоры и фауны.
Описываемые процессы были важной частью произошедшего на рубеже Пермского и Триасового периодов Большого вымирания, самого масштабного в истории Земли. Тогда пришлось несладко не только жителям океанов, но и сухопутной флоре и фауне: она недосчиталась примерно 70% видов. В том числе, вымерли даже многие виды насекомых, известных своей живучестью. Погибли также древние леса, шумевшие по всему древнему гигантскому континенту Пангея, от полюса до полюса.
Хуже всего то, что происходящие сегодня процессы пугающе похожи на первые этапы той древней катастрофы. Человечество и без супервулканов отлично «справляется» с насыщением атмосферы углекислым газом, кислотность Мирового океана растет (в NASA теперь решили следить за ее уровнем с помощью спутников), и в некоторых морях это уже угрожает снижением биоразнообразия.
«Ученые подозревали, что окисление океана имело место во время крупнейшего массового вымирания всех времен, но прямых доказательств до сих пор не было, — говорит Кларксон. — Это открытие вызывает беспокойство, учитывая, что сегодня мы уже можем видеть повышение кислотности океана в результате производимых человечеством выбросов углекислого газа».
Источник: Научная Россия
Основной целью подводной научно-исследовательской и жилой станции станет изучение способов добычи энергоресурсов с морского дна. По оценкам, проект обойдется в 26 миллионов долларов.
Японская строительная компания объявила о проекте создания подводного города, сообщает The Washington Post.
Компания "Shimizu Corp" представила чертежи подводной научно-исследовательской и жилой станции, длина которой составит порядка 15 километров, а диаметр — 500 метров. Верхняя часть станции, имеющая форму спирали, должна будет находиться у поверхности воды, в то время как нижняя — зарываться в морское дно.
Внутри станции будут находиться гостиницы, квартиры и торговые площадки, способные разместить около 5 тысяч человек.
По оценкам, проект, окрещенный "океанской спиралью", обойдется в 26 миллионов долларов. На строительство уйдет около 5 лет.
"Это всего лишь проект, но мы нацелены на разработку технологии, которая позволила бы построить под водой пригодное для жизни пространство", — заявил пресс-секретарь компании.
Сообщается, что основной целью сооружения станет изучение способов добычи энергоресурсов с морского дна. Отмечается, что проект представляет особый интерес в связи с повышением уровня мирового океана и изменениями климата.
Амбициозный проект уже поддержали ряд исследовательских компаний, а также японские государственные учреждения.
Источник: РИА Новости
Ученые установили, что за последние несколько лет температура глубоководных слоев океана не повышалась. Этот факт создает новые сложности теории глобального потепления климата.
Результаты исследования, проведенного американскими учеными из Лаборатории реактивного движения NASA, опубликованы в журнале Nature Climate Change.
Согласно представлениям климатологов, потепление климата Земли связано с деятельностью человека, который сжигает ископаемое топливо и выбрасывает в атмосферу углекислый газ. Однако в последние годы глобальное потепление приостановилось, тогда как содержание парниковых газов в атмосфере продолжало расти.
Согласно наиболее популярной теории, объясняющей это противоречие, излишки тепла поглощаются глубинами океана - нагретая вода с поверхности погружается туда из-за перепада плотности. Чтобы проверить данную гипотезу, авторы статьи проанализировали данные, собранные в рамках проекта «Арго». Так называется единая система из более чем 3000 измерительных буев, расположенных во всех океанах Земли. Они периодически погружаются и измеряют соленость, температуру и другие параметры на глубине до 2000 метров.
Кроме того, ученые привлекли информацию, полученную с помощью спутников Jason-1 и Jason-2. Они вычислили, что ежегодно уровень океана повышается на 2,78 мм, причем прирост на 2 мм складывается за счет таяния ледников, а еще 0,9 мм дают поверхностные слои воды (расположенные выше двухкилометровой отметки), расширяющиеся за счет нагревания. Это значит, что глубинные слои океана (ниже двухкилометровой отметки) ежегодно «сжимаются» на 0,12 мм вследствие охлаждения.
Впрочем, авторы статьи не могут поручиться за похолодание глубин океана: разница в 0,12 мм слишком мала и может быть списана на погрешность измерений. Тем не менее, ученые уверены в том, что в 2005-2013 годах в глубинные слоях океана не аккумулировался избыток тепла. Следовательно, этим фактором нельзя объяснять приостановку глобального потепления.
Истчоник: infox.ru
О том, что внутри Энцелада находится вода, учёные заговорили после 2005 года, когда тот же «Кассини» впервые запечатлел следы водяного пара и льда, выплёвываемого из отверстий близ южного полюса этой сатурнианской луны. Однако тогда многие заявляли, что сами по себе гейзеры не являются свидетельством существования океана: мол, вода могла расплавиться лишь вблизи поверхности — просто от столкновения ледяных плит «коры» Энцелада, и нагрев был местным и кратковременным.
Как же точно убедиться, есть ли под внеземным льдом океан? «Чтобы выявить гравитационные вариации [на Энцеладе], мы использовали эффект Доплера — тот же, что применялся в радарных устройствах для определения скорости нарушителей ПДД, — поясняет Сами Асмар (Sami Asmar) из Лаборатории реактивного движения НАСА, один из авторов работы. — Когда космический аппарат пролетает близко от Энцелада, его скорость изменяется под влиянием небесного тела на величину, колеблющуюся в соответствии с вариациями гравитационного поля Энцелада, которое мы хотим измерить. Затем мы отслеживаем сдвиги в скорости [«Кассини»] по изменению частоты радиоволн, на которых поддерживаем с ним радиосвязь...»
Что дали измерения гравитационных вариаций? Они показали, что плотность Энцелада неоднородна, и под его поверхностью есть большой — возможно, «региональный» (то есть не глобальный) — подлёдный океан глубиной всего в 10 км, лежащий под ледяной толщей в 30–40 км. Точная его площадь пока может быть определена лишь с немалой погрешностью, но она по крайней мере не уступает 80 000 км², то есть не менее 10% от общей поверхности этой луны.
Океан ограничен южной приполярной областью этого небесного тела, и пока неясно, почему именно ею. Высказываются предположение, что это, вероятно, связано с особенностями приливного разогрева спутника гравитационным воздействием близкого Сатурна. Именно это тепло (в теории) позволяет существовать незамерзающему океану внутри Энцелада, даже несмотря на то, что он отстоит от Солнца на полтора миллиарда километров, отчего средняя температура тамошней поверхности равна —200 °С.
Это открытие делает Энцелад одним из самых привлекательных для микробной жизни мест в Солнечной системе. Ранее теоретическое моделирование недр спутников планет-гигантов показывало неутешительную картину: предполагалось, что глубина их подлёдных океанов могла доходить до 100 и более километров. Это означало, что на их дне колоссальное давление и плотный слой разных видов экзотического льда, делающий обмен минералами между твёрдой частью спутника и водяным океаном нереальным. Ну а в бедной минералами и изолированной от атмосферы воде жизни существовать сложно: сноса микроэлементов с континента под ледовым панцирем не бывает.
Обнаружение на спутнике диаметром всего в 513 км океана, по глубине близкого к вполне обитаемой Марианской впадине, значительно снижает угрозу полной изоляции такого водного бассейна от внутренних силикатных областей спутника. Следовательно, в этом супе достаточно соли, чтобы поддержать популяцию микробов-гурманов.
19 пролётов около Энцелада в 2010–2012 годах дали непредставимую ранее точность определения изменений скорости «Кассини» — вплоть до вариаций в 90 мкм/с. Благодаря этому и удалось выявить под южной частью луны область повышенной плотности, соответствующую океану. Вообще говоря, южная часть Энцелада характеризуется впадиной, однако измерения показали, что колебания скорости «Кассини» были заметно меньше, чем можно было бы ожидать с учётом её глубины. На этом основании и удалось рассчитать район расположения крупного подлёдного океана.
Источник: КОМПУЛЕНТА
Океаны живут всего лишь несколько сотен миллионов лет — как приходят, так и уходят. Новые рождаются, когда континенты разрываются на части, а из разломов изливается горячая магма — она застывает и превращается в океаническую кору. Старые умирают, когда континенты сталкиваются, и океаническая кора под их давлением погружается обратно в мантию.
Механизм формирования зон субдукции, однако, остаётся туманным. С годами океаническая кора остывает и становится более плотной, поэтому старая кора может спонтанно деформироваться, выгнуться, просесть в мантию. Но в то же время старая кора крепче и жёстче, что вроде бы не должно позволять ей выгибаться и проседать.
Чтобы разобраться в этом вопросе, надо найти такую зону субдукции, которая только начала формироваться, рассудил Жуан Дуарте из Университета Монаш (Австралия). Поиски привели его группу к неизвестному доселе примеру тектоники плит на юго-западе от Португалии.
Атлантика — относительно юный океан, и в нём почти нет зон субдукции, то есть с геологической точки зрения это довольно тихое место. Однако сильные землетрясения, потрясшие Португалию в 1755 и 1969 гг., породили подозрения в том, что глубоко под водой происходит нечто необычное.
Г-н Дуарте и его коллеги восемь лет занимались картографированием геологической активности у португальских берегов. «Постепенно мы начали осознавать, что наши данные говорят о формировании новой зоны субдукции», — говорит учёный.
И так было ясно, что эта область испещрена надвигами — небольшими участками, в которых одни фрагменты породы заходят под другие. Группа г-на Дуарте обнаружила, что они связаны так называемыми трансформными разломами, где породы трутся друг о друга на одном уровне. Все вместе они создают большую систему разломов протяжённостью несколько сотен километров, которая, по трактовке авторов исследования, представляет собой нарождающуюся зону субдукции.
Самое главное — работа позволяет судить о причинах её формирования. Она лежит всего в 400 км к западу от — зоны субдукции на западе Средиземного моря, которое и само некогда было океаном, пока Африка не столкнулась с Евразией. Группа г-на Дуарте пришла к выводу, что трансформные разломы соединяют Гибралтарскую дугу с новой зоной субдукции. По их словам, субдукция (пододвигание одной литосферной плиты под другую), вероятно, распространяется из умирающего Средиземноморья в относительно юную Атлантику.
«С определённой уверенностью можно утверждать, что перед нами пример заражения субдукцией», — говорит эксперт. Средиземное море в свою очередь могло «подхватить» субдукцию от какого-нибудь более древнего океана и так далее до начала времён. «Субдукция может вести себя подобно инфекционному заболеванию», — блещет образным мышлением г-н Дуарте.
Жак Девершер из Брестского университета (Франция) полагает, что «инфекционная теория» действительно способна объяснить формирование новых зон субдукции. Но, по его мнению, ещё очень рано с уверенностью говорить о том, что в данном уголке земного шара открывается новая зона субдукции.
Если же г-н Дуарте и его коллеги правы, Атлантический океан на наших глазах превращается из молодого, растущего водоёма в стареющий и умирающий. Кстати, он уже убывает в Карибском бассейне и на крайнем юге. Европа и Америка могут воссоединиться примерно через 220 млн лет.
«Можете считать эти три зоны субдукции пороками развития, — говорит г-н Дуарте. — Из этих областей разойдутся трещины, которые рано или поздно приведут к разлому литосферной плиты. Возможно, мы оказались свидетелями переломного момента в истории Атлантики».
Результаты исследования опубликованы в журнале Geology.
Источник: КОМПЬЮЛЕНТА
Увеличение кислотности морской воды может привести к коренным изменениям азотного цикла.
Азот — одно из важнейших питательных веществ в океане. Все организмы от микробов до голубых китов с помощью азота образуют белки и другие нужные соединения. Некоторые микроорганизмы используют определённые химические формы азота в качестве источника энергии. Одна из групп таких микроорганизмов — окислители аммиака — играет ключевую роль в определении того, какие формы азота присутствуют в океане.
Между тем очень мало известно о том, как окисление океана может повлиять на жизнедеятельность окислителей аммиака и прочих важных микроорганизмов.
Майкл Беман из Гавайского университета и его коллеги поставили шесть экспериментов в двух океанах. В каждом случае, когда исследователи повышали уровень кислотности воды, популяции окислителей аммиака сокращались. Результаты оказались на удивление похожими в разных регионах Мирового океана.
В ходе нитрификации океанов в атмосферу поступает один из главных парниковых газов — закись азота. Поэтому при прочих равных условиях снижение интенсивности этого процесса должно принести пользу. При падении рН морской воды на 0,1 учёные оценивают уменьшение выбросов закиси азота на величину, сопоставимую со всеми текущими выбросами этого газа в результате сжигания ископаемого топлива и промышленной деятельности.
Этот эффект, впрочем, может быть нивелирован другими формами глобальных экологических изменений — например, ростом осаждения азота в океане или снижением концентрации кислорода в некоторых областях океана.
Есть и другое возможное следствие. По мере того как двуокись углерода, образованная в результате человеческой деятельности, будет наполнять океаны, организмы, занимающиеся окислением аммиака, станут утрачивать свои конкурентные преимущества. В отдалённой перспективе это приведёт к тому, что нитраты перестанут быть основной формой хранения азота в океане и уступят своё место восстановленному аммонию.
С уменьшением среднего рН океана с 8,1 до 8,0 с нитратов на аммоний перейдёт до 25% особей, входящих в первое звено пищевой цепи. Последствия такого сдвига нелегко предсказать.
Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.
Источник: КОМПЬЮЛЕНТА
Титан — это один из самых загадочных объектов Солнечной системы. Уже давно ученые выдвигают предположения о том, что на этом спутнике Сатурна, возможно, существует примитивная жизнь. Недавнее открытие американскими астрономами перистых облаков в атмосфере Титана навело на мысль, что его атмосфера чем-то похожа на ту, которой обладала молодая Земля.
Специалистам из Центра космических полетов Годдарда и Мэрилендского университета удалось обнаружить в атмосфере Титана облака, подобные перистым, которые иногда наблюдают в верхних слоях земной атмосферы. Открытие послужило толчком к уже не раз выдвигавшимся предположениям по поводу существования органической жизни на этом спутнике Сатурна.
Титан — это один из самых загадочных объектов Солнечной системы. Он является вторым по величине после Ганимеда и самым крупным из спутников Сатурна — его вес в 20 раз превышает вес всех остальных спутников, вместе взятых. Диаметр Титана составляет 5150 километров, радиус его орбиты — 1,222 миллионов километров, а плотность — 1880 кг/м3. Спутник был открыт в 1655 году Х. Гюйгенсом.
По своему строению Титан напоминает спутники планеты Юпитер — Ганимед и Каллисто: у него имеются плотное ядро, состоящее из скальных пород, и ледяная мантия, состоящая из замерзшей воды и гидрата метана. Но, в отличие от своих "юпитерианских" собратьев, он еще и обладает мощной атмосферой: его окутывают аэрозольная дымка и облака. Из-за этого поверхность Титана нельзя наблюдать при помощи обычной оптики. Поверхность спутника имеет красно-коричневый цвет и может меняться в зависимости от сезона.
В 1944 году в атмосфере Титана обнаружили метан, а еще спустя 30 лет — молекулярный водород. Ученые выдвинули гипотезу, что этот водород является продуктом фотолиза метана и аммиака. Но при таких реакциях должны были образоваться и азотноводородные соединения. В таком случае в атмосфере должен был присутствовать парниковый эффект!
Но в 1979 году радиометрические измерения в тепловом инфракрасном диапазоне показали, что никакого парникового эффекта нет и в помине, напротив, поверхность Титана даже холоднее его атмосферы. Однако основным элементом в ней все-таки оказался азот — его содержание в атмосфере составляло примерно 85 процентов. Около 12 процентов составлял аргон, и менее трех процентов приходилось на долю метана. Кроме того, в "воздухе" Титана содержались небольшие количества этана, пропана, ацетилена, этилена, кислорода, водорода и других летучих газов.
Согласно расчетам специалистов, микробы на Титане могут дышать водородом и питаться ацетиленом, этаном и толинами, которые содержатся в верхних слоях атмосферы. В результате обмена веществ образуется метан.
Концентрация водорода вблизи поверхности планеты гораздо выше, чем в толще атмосферы, а содержание ацетилена ниже, что может указывать на наличие жизнедеятельности бактерий.
В 1997 году к Сатурну была отправлена автоматическая межпланетная станция "Кассини". В июле 2004 года станция достигла орбиты Сатурна, а в январе 2005 года на поверхность Титана приземлился исследовательский зонд "Гюйгенс" Европейского космического агентства. Он помог собрать более точные данные о характеристиках спутника.
Так, оказалось, что атмосфера Титана очень плотная и имеет красно-оранжевую окраску. Подобный окрас, как предполагают исследователи, спутнику придает вещество, образующееся путем сложных химических реакций на основе смешивания азота и метана. Эта пленка с отражательными свойствами была позднее синтезирована в лабораторных условиях и получила название "солин" ("грязь").
Кроме того, ранее предполагалось, что на поверхности Титана, возможно, существуют болота, состоящие из жидкого азота, с островами из замерзшего метана и силикатов. Хотя температура верхних слоев атмосферы Титана близка к 150 К, а температура поверхности к 94 К, что способствует конденсации азота, говорить об азотных "озерах" и "болотах" оказалось преувеличением. Вот дожди из жидкого метана здесь вполне реальны.
Что же касается океана, скрытого в недрах Титана, то аппаратура показала, что наиболее распространенный углеводород здесь — это этан, и подземный океан, если он вообще существует, может состоять на 70 процентов из этана, на 25 — из метана и на пять процентов из азота. Глубина его может достигать одного километра, а под океаном должен находиться слой жидкого ацетилена глубиной до 300 метров.
Последние открытия подтверждают, что атмосфера Титана подобна атмосфере ранней Земли. Поэтому теоретически жизнь на крупнейшем спутнике Сатурна могла существовать. Но лишь теоретически.
Группа палеонтологов из Китая и Великобритании обнаружила останки морского обитателя возрастом 525 миллионов лет из кембрийского периода. Самое примечательное в находке – отчётливые окаменелости мягких частей тела.
По морфологическим признакам специалисты отнесли новичка к классу перистожаберных. Полмиллиарда лет назад эти существа были очень широко представлены в земных океанах. Ныне их потомки могут похвастать примерно 30 видами.
Перистожаберные – сидячие животные, развивающиеся внутри полых жёстких трубочек, выстраиваемых самими жильцами. В охоте эти создания полагаются на щупальца с ресничками.
До сих пор палеонтологам почти не попадались окаменелости мягких тканей древних полухордовых, а если встречались, то без тонких анатомических деталей. Именно поэтому нынешнее открытие обрадовало учёных. Они говорят, что окаменелость предоставляет уникальную возможность проследить детали развития перистожаберных.
Последние, с одной стороны, являются родственниками сравнительно простых морских звёзд и морских ежей, а с другой, демонстрируют черты, являющиеся ключом к эволюции ранних позвоночных.
Новое существо получило имя Galeaplumosus abilus, что значит «пернатый шлем из-за облака». Первая часть названия намекает на внешний облик создания, а вторая указывает на место находки – провинцию Юньнань (буквально «к югу от облаков»).
(Детали открытия можно найти в пресс-релизе университета и статье в Current Biology.)
Источник: MEMBRANA
22–26 октября на 164-м собрании Американского акустического общества Дэвид Браунинг из Род-Айлендского университета представит вместе с коллегами исследование, утверждающее, что растущее подкисление морей уже в ближайшее время может серьёзно повлиять на распространение в них звука. Ну и что? А то, что это даст эволюционные преимущества ряду видов, пользующихся дальними средствами подводной связи.
«Мы называем это акустическим эффектом мелового периода, поскольку подкисление океана, вызванное глобальным потеплением, кажется, ведёт к акустически условиям, сходным с теми, что существовали 110 млн лет назад, в эпоху динозавров», — комментирует акустик.
Используя данные по историческим уровням бора в отложениях морского дна, характеризующим океанскую кислотность в последние 300 млн (как и содержание углекислого газа в атмосфере), г-н Браунинг попробовал смоделировать «звуковой ландшафт» мирового океана в ту эпоху.
Примерно 300 млн лет назад, ещё в палеозое, наступил такой момент, когда кислотность в океане — и, следовательно, скорость распространения низкочастотных звуковых колебаний — была на современном уровне, рассказывает учёный. Это совпало с близким по концентрации уровнем атмосферного углекислого газ (~0,039%). До этого, 400–600 млн лет назад, содержание двуокиси углерода было намного выше нынешнего — вплоть до кошмарных 0,6% (пятнадцатикратное превышение). Но после снижения концентрации углекислого газа, случившегося в районе 300 млн лет назад, ситуация не застаивалась. 250 млн лет назад CO2 стал пребывать в атмосфере, что, понятно, сказывалось на подкислении воды. Например, 150–200 млн лет назад углекислоты в воздухе было 0,3% (в семь с лишним раз больше, чем сейчас), и звуки на частотах около 200 Гц и ниже распространялись в океане вдвое дальше.
«Эти данные важны во многих отношениях, — отмечает Дэвид Браунинг. — Они влияют на конструкцию и будущую эффективность сонаров. А равно на оценку уровней фонового низкочастотного шума в морях. И мы просто обязаны это учитывать, если хотим улучшить наше понимание звуковой среды морских млекопитающих».
Действительно, те же киты общаются на частотах ниже 200 Гц, а голубые киты и вовсе жить не могут без инфразвука (8–20 Гц). Интересно, что если сейчас такой звук позволяет голубым китам разговаривать на расстояниях до 33 км, то в будущем, к 2100 году, дистанция может как минимум удвоиться.
Кстати, низкочастотные приборы подводного акустического слежения способны регистрировать голоса китов на расстоянии до 1 600 км (при громкости до 188 дБ, что больше, чем у реактивного лайнера на взлёте), что, по сути, означает почти постоянное наличие шумов в «китовых диапазонах» уже сегодня и существенный рост таких шумов в ближайшем будущем.
Что ж, хоть кому-то глобальное потепление пойдёт на пользу…
Источник: КОМПЬЛЕНТА
Моделирование одной из ближайших экзопланет показало, что на её поверхности могут существовать водяные океаны, а в атмосфере — облака и осадки. И пусть обстановка в этом мире всё равно довольно непривычна на вкус землян, жизнь там могла бы найти пристанище.
Глизе-581, расположенная в 20 световых годах от нас, приносила сенсации уже не раз. Четыре года назад у неё впервые была найдена планета земного типа (Gliese 581 c) в обитаемой зоне.
ЗвездаПозже учёные учли не только расстояние до звезды, но и наиболее вероятный состав атмосферы планеты c и заявили, что там, пожалуй, всё-таки жарковато. Но из тех же соображений (парниковый эффект) астрономы выдали аванс обитаемости другому миру в той же системе — планете Gliese 581 d, расположенной дальше от светила.
Далее у той же звезды открыли Gliese 581 e — самую лёгкую экзопланету на данный момент из тех, что вращаются вокруг обычных звёзд (не считая пульсаров).
Наконец, прошлой осенью планетарная система Глизе-581 пополнилась планетами с индексами f и g. Причём последняя попала точно в центр так называемой "зоны Златовласки", то есть зоны обитаемости (c и d красуются на её краях).
К сожалению, скалистый мир g до сих пор не подтверждён повторными измерениями других команд. Слишком тонкое влияние он вносит в движение родительской звезды, по колебаниям в котором и был найден. Некоторые специалисты подозревают, что Gliese 581 g может быть ошибкой измерений.
А пока этот вопрос открыт, внимание планетологов вновь вернулось к Gliese 581 d. Этот скалистый мир весит как семь Земель, а по размеру крупнее нашей планеты примерно вдвое. Так что сила тяжести на его поверхности составляет 1,75 от земной.
Учёные из французского Национального центра научных исследований (CNRS) и института Лапласа (Institut Pierre Simon Laplace) использовали детальную модель климата, в которую можно было вносить широкий спектр начальных условий, чтобы выяснить — что же происходит на поверхности планеты d.
Планетологи предполагают, что приливными силами этот мир может быть «заперт» так, что смотрит на своё солнце всё время одной стороной. Об особом перегреве дневного полушария тут речи не идёт — Gliese 581 d получает от своей звезды (красного карлика) втрое меньше энергии, чем Земля. Но опасение вызывала сторона вечной ночи – её холод мог сконденсировать всю атмосферу и заморозить возможную воду.
Как информирует ScienceDaily, модель французов воспроизвела атмосферу планеты и её поверхность в трёх измерениях.
К удивлению авторов оказалось, что при определённой концентрации углекислого газа (весьма вероятной для этого мира) планета d не только избегает замораживания, но и обеспечивает приличные условия для жизни. При этом циркуляция атмосферы обеспечивает хорошее перераспределение энергии между дневным и ночным полушарием и выравнивание их температур.
Средняя глобальная температура на Gliese 581 d — выше нуля по Цельсию. Причём такая среда оказалась стабильной для широкого спектра граничных условий (в частности, тонкостей в составе атмосферы). Да ещё она справедлива как для поверхности, представляющей собой сушу, так и для гипотетических океанов, уточняют исследователи.
Ключом к защите от глобального оледенения и краха атмосферы оказалось не только присутствие парникового газа, но и спектр звезды. В нём велика доля красных лучей. Больше, чем, к примеру, в солнечном свете. А такие волны эффективно проникают сквозь толстую атмосферу, нагревая поверхность далёкого мира.
Ещё учёные выявили, что на большой высоте в атмосфере планеты d существуют облака из сухого льда. И пусть это всего лишь моделирование, но оно настолько детальное, что французы смело называют Gliese 581 d первой сверхземлёй с подтверждённым нахождением в обитаемой зоне.
Из-за различных по составу облаков даже на освещённой стороне этого небесного тела царит красноватый сумрак. Неподвижное светило в небе и повышенная гравитация добавляют Gliese 581 d своеобразного шарма. И всё же нужно признать, этот мир куда ближе к нашему собственному по условиям, чем какой-либо другой.
Открытие французов повышает шанс на существование жизни если не на этой планете, то где-нибудь ещё в Галактике. Авторы численного эксперимента надеются, что новые наблюдения при помощи телескопов помогут получить фактические данные об атмосфере Gliese 581 d и убедиться в правоте компьютерных моделей.
(Результаты исследования опубликованы в Astrophysical Journal. Детали также можно найти в пресс-релизе института Лапласа.)
Источник: MEMBRANA
Рост кислотности в океане, как ожидается, будет иметь тяжёлые последствия для организмов (прежде всего кораллов), но некоторые морские ежи имеют генетические инструменты, позволяющие им адаптироваться к негостеприимным условиям.
По мере роста атмосферной концентрации углекислого газа океан будет поглощать всё больше CO2, и рН воды упадёт (напомним, чем ниже водородный показатель, тем выше кислотность среды). У кораллов и планктона появятся проблемы со снабжением скелетов карбонатом кальция, поскольку этого вещества в кислой воде попросту не будет хватать. Насчёт других организмов далеко не всё ясно.
Эволюционный биолог
Морской биолог
Учёные воспользовались естественной изменчивостью рН в прибрежных областях восточной части Тихого океана. Например, в штате Орегон pH падает с 8,1 до 7,6 в периоды апвеллинга, когда ветер заставляет подниматься из глубин воду, богатую углекислым газом. До 2100 года pH, равный 7,6, ни в каком другом месте океана не ожидается, подчеркнул на конференции Тайлер Эванс, научный сотрудник лаборатории г-жи Хофманн.
Г-н Эванс набрал взрослых ежей в Фогарти-Крик (местность на побережье штата Орегон с особенно низким pH), спарил их и вырастил потомство при нормальных (400 микроатмосфер) и повышенных (800) концентрациях диоксида углерода. Затем он проанализировал экспрессию генов в популяциях и обнаружил, что 150 генов, включившихся у животных, которые выросли в условиях низкого pH, в значительной степени связаны с транспортом кальция. Иными словами, они способствовали кальцификации в кислой воде.
Напротив, гены, активизировавшиеся при сходных условиях у коралла
Теперь исследователи хотели бы выяснить, какую цену платят морские ежи за такую адаптацию. По предварительным данным, у них в результате тратится больше энергии и повреждаются какие-то белки.
Это не единственные существа, способные справиться с подкислением океанов. Г-н Палумби представил доказательства масштабных генетических вариаций у
Но у любой адаптации есть предел.
Источник: КОМПЬЮЛЕНТА
Аппаратам, которые отправятся исследовать
Новое исследование говорит о том, что вода может оставаться в жидком состоянии близ поверхности Европы лишь несколько десятков тысяч лет — мгновение по сравнению с возрастом Солнечной системы.
О том, что Европа, диаметр которой 3 100 км, имеет гигантский океан под ледяной оболочкой, говорят многие. Хотя поверхность спутника холодна, тепла, создаваемого в её внутренностях притяжением Юпитера, вполне достаточно для поддержания воды в жидком состоянии. По некоторым оценкам, дно океана может располагаться в 100 км под замороженной твердью.
На Земле жизнь можно найти повсюду, где есть вода, поэтому Европа и манит к себе исследователей. Однако остаётся неизвестным, насколько трудно будет добраться до тамошнего океана отважному автоматическому путешественнику. Есть и такие учёные, которые подозревают, что до воды всего несколько километров.
Г-жа Калусова провела математическое моделирование того, как смесь жидкой воды и твёрдого льда ведёт себя в определённых условиях. Выяснилось, что различия в плотности и вязкости (а также других показателях), возможно, заставляют воду, оказавшуюся близ поверхности Европы, быстро просачиваться через частично растаявший лёд вниз — к остальному океану.
Европа не единственная луна Солнечной системы с подземным океаном. Другие спутники Юпитера,
Результаты исследования представлены на
Источник: КОМПЬЮЛЕНТА
Считалось, что сильные ураганы лишь останавливают рост аэродинамической шероховатости океана (сопротивления ветру), однако новое исследование уточняет: на самом деле при очень высокой скорости ветра брызги и пена создают своего рода защитное покрытие, которое позволяет воздуху скользить по волнам почти без трения.
Эту неожиданность следует учесть в компьютерных моделях ураганов, подчёркивают учёные.
Специалисты из Нидерландов и США проанализировали данные, полученные особым самолётом, который бесстрашно бросался на бури в 1998−2005 годах. Кроме того, рассмотрена киносъёмка поверхности океана с низких высот во время ураганов 1966−1980-го. Более трети из этих данных никогда не публиковалось, и многие из них невозможно получить сегодня, ибо текущие правила безопасности запрещают полёты в подобных условиях, поясняет Лео Холтхёйсен из
Аэродинамическая шероховатость поверхности измеряется с помощью коэффициента лобового сопротивления. Это трение, делённое на площадь поверхности. Исследователи обнаружили, что при скорости ветра менее 35 м/с (около 126 км/ч, ураган 1-й категории) коэффициент лобового сопротивления, как и ожидалось, рос соразмерно увеличению скорости ветра. Но при скорости ветра до 40 м/с (144 км/ч) пена и брызги сформировали нечто вроде сплошной пелены, и коэффициент лобового сопротивления стал падать.
К тому моменту, когда скорость ветра достигает 80 м/с (288 км/ч, 5-я категория), коэффициент лобового сопротивления резко падает практически до нуля. В этих условиях высота волн достигает 20−30 м, и ветер просто перепрыгивает через впадины между ними.
Снижение коэффициента аэродинамического сопротивления при высоких скоростях ветра даёт значительный эффект. Когда поверхность становится аэродинамически гладкой, ветер не способен передать воде большой импульс, поэтому волны не могут быть выше, чем предсказывают модели.
Результаты исследования опубликованы в
Источник: КОМПЬЮЛЕНТА
Физики с помощью компьютерной симуляции показали, что необычное ступенчатое распределение воды в теплых океанах вызывается солевыми пальцами. Работа ученых опубликована в журнале Physical Review Letters, а ее краткое содержание приводится на сайте Американского физического общества.
Воды в океанах обычно распределяются по слоям разной температуры и солености, и нижние слои обычно более холодные и соленые. Холодная и соленая вода имеет большую плотность, чем теплая и менее соленая, поэтому такое распределение неудивительно.
Однако, в некоторых местах океанов, особенно в южных широтах, наблюдается аномальное распределение плотности. Верхние слои воды в этих местах теплые, но из-за сильного испарения содержат больше соли и имеют большую плотность, чем нижние. Интересно, что плотность и соленость в глубину меняется не постепенно, а ступенями толщиной от 10 до 30 метров - океан в таких местах разделен на достаточно устойчивые слои, площадь которых составляет сотни квадратных километров.
Ученые разработали ресурсоемкую гидродинамическую модель (без использования периодических границ) и провели симуляцию поведения воды с разной соленостью и температурой. Оказалось, что из состояния с плавным распределением температуры и солености в слоистое состояние система переходит самопроизвольно, а главную роль в этом играют солевые пальцы.
Гипотеза солевых пальцев была предложена еще в 60-е годы прошлого века, однако показать ее справедливость в настолько подробном моделировании до сих пор не удавалось. Солевые пальцы представляют собой выпячивания верхнего слоя жидкости, которые быстро падают вниз. Высокая скорость и устойчивость их движения объясняются тем, что скорость диффузии тепла гораздо выше скорости обмена солью. Падая вниз, солевой палец быстро приобретает температуру окружающего слоя, но не теряет солености. Из-за этого он оказывается тяжелее окружающего слоя и устремляется еще ниже.
Проведенное авторами статьи моделирование показало, что образование солевых пальцев самопроизвольно приводит к расслаиванию жидкости в океанах, - там, где скорость испарения оказывается достаточно высокой.
Источник: lenta.ru
07-11-2017 Просмотров:3255 Новости Эволюции Антоненко Андрей
Ученые выяснили, что млекопитающие перешли от ночного к дневному образу жизни после вымирания динозавров. Получается, именно из-за угрозы со стороны динозавров наши далекие предки десятки миллионов лет боялись показаться на...
07-10-2014 Просмотров:7169 Новости Экологии Антоненко Андрей
Ученые установили, что за последние несколько лет температура глубоководных слоев океана не повышалась. Этот факт создает новые сложности теории глобального потепления климата. Результаты исследования, проведенного американскими учеными из Лаборатории реактивного движения...
06-11-2012 Просмотров:15041 Экспедиции Антоненко Андрей
Строительство парусного тримарана "Пегас" было задумано после нашей экспедиции на Курильские острова в 2008г. Основные предъявляемые к нему требования были - возможность относительно безопасного длительного путешествия по морям, удобство обитания,...
21-10-2012 Просмотров:12471 Новости Экологии Антоненко Андрей
Губернатор Приморья Владимир Миклушевский подписал постановление о создании в регионе нового природного экологического госзаказника "Среднеуссурийский", что будет способствовать сохранению популяции амурского тигра, занесенного в Международную Красную книгу, сообщает администрация края. Новый...
18-09-2015 Просмотров:7077 Новости Палеонтологии Антоненко Андрей
Ученые-палеонтологи обнаружили в Якутии наиболее полно сохранившийся скелет степного мамонта, который жил в период среднего плейстоцена - 500 тыс. лет назад и является предком шерстистого мамонта. Эта находка единственная в...
Редкое в Зеленограде зимнее насекомое - бескрылая орехотворка Biorhyza pallida. Этот вид питается только на дубах. У него чередуются два поколения: 1) летние крылатые самки и самцы и 2) зимние…
Ученые обнаружили в геномах хомячков особый набор генов, который управляет длиной и размерами тоннелей, которые эти грызуны вырывают под землей, и повреждение этих участков ДНК приводит к потере способности к…
Предлагаем вам взглянуть на рентгеновские снимки различных животных и узнать для себя много нового. Рентгеновский снимок беременной змеи Рентгеновский снимок змеи Рентгеновский снимок шиншиллы Рентгеновский снимок шиншиллы Рентгеновский снимок беременной собаки Рентгеновский снимок собаки Рентгеновский снимок черепахи Рентгеновский…
Между кукушками и теми птицами, в чьи гнёзда они подкладывают свои яйца, идёт непрекращающаяся эволюционная война. Кукушки стараются, чтобы их яйца не отличались от яиц приёмных родителей, а те стремятся…
Небольшой хищный динозавр, довольно похожий на знаменитых велоцирапторов из фильма "Парк юрского периода", попался палеонтологам в канадской провинции Альберта. Похоже, он является одним из самых высокоширотных представителей семейства Dromaeosauridae и…
Ученые выяснили, что у рыб латимерий, которые являются классическим примером живых ископаемых, имеются рудиментарное легкое. Возможно, благодаря его уменьшенному размеру латимериям удалось дожить до наших дней. ЛатимерияОб этом говорится в статье…
Колюшка девятииглая широко распространена в низовьях Енисея. Встречается от Курейки до дельтовых проток включительно. Заселяет бассейны всех притоков дельты, губы и залива. Известна в озерах тундры и лесотундры. Колюшка девятииглая -…
Паразитологи из Пастеровского института (Франция) обнаружили необычный подвид малярийного комара. В странах Африки южнее Сахары от малярии умирает около 710 тыс. человек в год. Самая опасная форма заболевания, вызываемая паразитом под…
Австралийские птицы-шалашники замечательны брачным ритуалом. Когда приходит пора размножения, самец строит из прутьев и палочек то-то вроде небольшого туннеля длиной чуть более полуметра, один конец которого выходит на этакую «эстраду»…