Работу нервной цепи обычно описывают скоростью реакции: это один из краеугольных параметров любой «науки о мозге», будь то психология или нейробиология. С помощью скорости реакции удалось построить весьма эффективные модели, объясняющие различия в поведении индивидуума: в таких моделях скорость отклика зависит от накопления единичных раздражителей, информационных единиц. То есть мозг, грубо говоря, работает аккумулятором данных, и когда их количество превосходит некий порог, запускается отклик. Сидя на диване, мы можем думать, что нам нужно сделать то-то и то-то, и когда количество (или навязчивость) этих «то-то» достигает некоего уровня, мы с дивана встаём. А различия в скорости реакции можно объяснить тем, насколько быстро и специфично мозг собирает информацию для того или иного действия.
Нейроны коры мозга, растущие в культуре (фото Dennis Kunkel Microscopy, Inc.). С другой стороны, нейробиологи заметили, что психологическая скорость реакции сопоставима с поведением отдельного нейрона. Активация нервной клетки тоже происходит после преодоления определённого порога раздражения, которое может приходить к ней от соседних клеток, и работу нервной цепи, казалось бы, тоже можно было охарактеризовать скоростью реакции. Но в нервной цепи может быть много, очень много нейронов; точных цифр пока никто не знает, однако, по примерным оценкам, в глазном движении могут участвовать приблизительно 100 тысяч нервных клеток. Вопрос в том, как этот огромный коллектив нейронов аккумулирует сигнал, чтобы потом выдать результат — в полном соответствии с теорией накопления?
Если, допустим, система нейронов ждёт, чтобы каждый её член накопил достаточно входящих сигналов, то скорость реакции будет тем меньше, чем больше сеть. Если же активация нейронного ансамбля определяется только каким-то одним «пусковым» нейроном, то большая сеть будет отзываться быстрее, чем маленькая, так как в большой на «пусковой» нейрон будет приходить больше сигналов.
Другой вопрос — координация нейронного ансамбля. Чем сильнее скоординирована система, тем больше она похожа на единый информационный накопитель. То есть в пределе много нейронов будут работать как один, накапливая раздражение и реагируя на него, подобно одной клетке. Но насколько глубокой должна быть координация нейронов в ансамбле, чтобы все они работали в унисон?
Чтобы ответить на эти вопросы, исследователи из Университета Вандербильта (США) разработали виртуальную модель, в которой можно было сопоставить поведение разного количества информационных аккумуляторов и интенсивность впитывания ими входящих сигналов. Модель оказалась весьма ресурсоёмкой: Джеффри Шеллу (Jeffrey Schall) и его коллегам пришлось ограничиться сетью в 1 000 виртуальных нейронов, большего количества не выдерживал даже сверхмощный компьютер.
Исследователей интересовало, в какой момент происходит запуск ответной реакции, что является тем последним камешком, который вызывает обвал. Происходит ли это, когда «камешек» падает на какой-то один нейрон, или же такие «камешки» должны упасть на всех участников цепи? Оказалось, что ни в первом, ни во втором случае скорость реакции никак не соотносится с тем, что можно наблюдать в настоящей нервной системе. Такой же отрицательный результат учёные получили, когда попытались сделать разные нейроны слишком по-разному накапливающими раздражение.
Однако реальных значений скорости реакции всё же можно было добиться, более или менее уравняв все нейроны по способности накапливать информационные «камешки» и снабдив всю систему ограничительными правилами, которые регулировали бы работу нейронов так, чтобы они выступали в унисон. То есть входящее раздражение падает на нейронный ансамбль так, как будто его воспринимает не набор из ста, тысячи или миллиона нейронов, а как один нейрон. На практике это означает, что время реакции не зависит от размера нейронной цепи: в ней может быть 10 или 1 000 нейронов, но время отклика у них всё равно будет примерно одинаковым. И то же самое, очевидно, верно и для более масштабных цепей.
При этом, конечно же, характеристики нейронов в 10-клеточной и в 1 000-клеточной цепи будут различаться, как и правила, которые ограничивают их общение друг с другом. Мы возьмём на себя смелость сравнить всё это с двумя системами — из 10 и из 1 000 сообщающихся сосудов. Как сделать так, чтобы одним и тем же количеством воды наполнить и ту и другую? Очевидно, уменьшив размер сосудов в той системе, где их больше. Разумеется, тут будет играть роль, во сколько кувшинов мы одновременно льём воду, какого размера перемычки между ними и т. д., но дальше мы фантазировать не будем.
Так или иначе, исследователям удалось теоретически согласовать данные психологии и нейробиологии, и теперь стоит дождаться экспериментов, направленных на проверку именно этих теоретических данных.
Результаты исследования опубликованы в журнале PNAS.
Источник: КОМПЬЮЛЕНТА
Заболевания, связанные с неправильной работой нервов, от эпилепсии до аритмии, имеют одну неприятную особенность: терапия, которая эффективна для одного больного, может оказаться совершенно никчёмной для другого.
Нейрон с передающим импульс отростком-аксоном. (Фото Dr. David Phillips.)Проблема эта, возможно, есть не только там, где речь идёт о неврологических расстройствах, но в таких случаях она особенно заметна. По словам Дэвида Шульца из Университета Миссури (США), происходит это потому, что, если перефразировать Льва Толстого, несчастливые нервные системы несчастливы по-разному.
То есть одни и те же симптомы, по которым мы определяем эпилепсию, могут развиться из-за неправильной работы нервов, но эта неправильность у разных людей может быть совершенно разной.
То же самое, впрочем, верно для любой нейронной активности. Эксперименты исследователей под руководством Дэвида Шульца показали, что два идентичных по сути нейрона решают одинаковую задачу (достижение некоей характерной электрической активности) разными способами.
Учёные ставили опыты с моторными нейронами краба — и оказалось, что разные нейроны одной цепи выдавали один и тот же конечный импульс, но при этом величина их проводимости менялась в 2–4 раза. В статье, появившейся в журнале PNAS, исследователи сообщают, что клетки при этом использовали разные комбинации ионных каналов, но конечный результат — подчеркнём ещё раз — оставался одним и тем же.
Итак, если мы говорим, к пример, о той же эпилепсии, то её можно описать следующим образом: какой-то нейрон испытывает недостаток возбуждения от других нейронов и пытается скомпенсировать это, повышая собственную возбудимость. Но затем, если до этого нейрона вдруг дойдёт нормальный импульс, он перевозбудит сверхвозбудимый нейрон, что в результате выльется в эпилептический припадок. Вопрос же в том, за счёт каких нейронов возникнет такая сверхвозбудимость и какой именно импульс станет тем камешком, который вызовет эпилептическую «лавину».
Истчоник: КОМПЬЮЛЕНТА
22-11-2011 Просмотров:10817 Новости Палеонтологии Антоненко Андрей
Динозавры, водившиеся в северном полярном регионе, едва сводили концы с концами и очень редко доживали до 20-летнего возраста. Троодон (изображение Bill Parsons)Патрик Дракенмиллер и Грегори Эриксон из музея Университета Аляски (США)...
16-06-2010 Просмотров:12199 Новости Метеорологии Антоненко Андрей
Раннюю жизнь на Земле от ультрафиолетовых лучей защищал метан. Раннюю жизнь на Земле от...
24-10-2012 Просмотров:14370 Новости Фото/Видео Антоненко Андрей
Вот уже 38 лет компания Nikon проводит конкурс микрофотографий. На этот раз победителей выбирали почти из двух тысяч участников. Давайте без лишних слов воздадим должное лауреатам. Первое место отдано изображению гематоэнцефалического...
29-03-2014 Просмотров:8451 Новости Антропологии Антоненко Андрей
Пожалуй, мы стали забывать, что до того, как ДНК открыла нам сексуальную неразборчивость неандертальцев и происхождение палеоиндейцев, была квагга. Изображение Nature / Tetra Images / Alamy.Странноватое существо с головой зебры и...
15-10-2016 Просмотров:23767 Млекопитающие (Mammalia) Антоненко Андрей
Класс: Млекопитающие (Mammalia) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Theria) Первозвери (Prototheria) Оглавление 1. Общие сведения о Млекопитающих 2. Ареал обитания Млекопитающих 3. Отличительные особенности Млекопитающих 4. Происхождение и эволюция Млекопитающих 5. Классификация Млекопитающих 1. Общие сведения о Млекопитающих Представители двух позклассов млекопитающих - Звери (лошадь)...
Рогатка живет преимущественно в прибрежной зоне Карского моря. Обычна в Енисейском заливе, горле и северной части губы. Иногда появляется в дельте. Встречается в устьевых зонах рек, впадающих в Енисейский залив. Рогатка…
Если из экосистемы убрать насекомых-вредителей, то растениям хватит всего нескольких лет, чтобы освоить новые экологические условия и пойти по иному эволюционному пути. Цветущая энотера (фото Scott Smith)Растения и насекомые так тесно…
Учёные продолжают искать и находить сходства между человеческой речью и звуками, издаваемыми обезьянами. Новое открытие сделал Тор Бергман из Мичиганского университета (США), изучавший повадки эфиопских гелад. Самец и самка гелады (фото…
Палеонтологи обнаружили в Испании крыло раннемеловой птицы, которое доказывает, что уже во времена динозавров пернатые могли маневрировать в полете не хуже, чем в наши дни. Крыло EnantiornithesОб этом говорится в статье…
Ученые нашли у мхов ген, который помогает справляться с высыханием, а у высших сосудистых растений стал основой для выработки древесины, необходимых для жизни на суше. Результаты исследования, проведенного специалистами из Франции…
Огненные муравьи Solenopsis invicta известны не только своим ядом и высокими завоевательными способностями (это один из самых агрессивных инвазивных видов), но и особенностями социальной жизни. Некоторые колонии у них начинаются…
Сотрудники биологического факультета МГУ имени М.В. Ломоносова изучили и сравнили древнейшие скелеты организмов докембрийского периода, найденные в Сибири, Китае и Намибии и выяснили, что их появление связано с химическими особенностями окружающей среды, а именно — уровнем минерализации…
Гранд-Каньон может сколько угодно казаться умопомрачительно огромным, но конкуренты у него всё-таки есть. В Южной Азии течёт река Брахмапутра, которая в Тибете носит название Ярлунг-Цангпо. В том месте, где она меняет…
Австралийские палеонтологи нашли череп одного из древнейших представителей кенгуру – Ganguroo bilamina, жившего 23 млн лет назад на северо-востоке Австралии. Кроме того, они серьезно пересмотрели подходы к разнообразию всей этой группы…