Мир дикой природы на wwlife.ru
Вы находитесь здесь:Разное>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Митохондрии


Согласно мнению большинства современных (и не очень) ученых, жизнь зародилась и первое время развивалась в водной среде. Лишь впоследствии разные группы организмов – от бактерий до растений, моллюсков и позвоночных – стали осваивать сушу. О том, насколько сложным был этот переход, можно судить уже по тому, что первые достоверные следы наземных организмов встречаются нам лишь спустя несколько миллиардов лет после появления жизни.

Эволюционное деревоЭволюционное деревоМало кто знает, но все наземные организмы произошли от небольшого числа видов древних животных, успешно освоивших сушу. О том, как именно им это удалось, рассказали недавно исследования эволюции митохондрий, предпринятые несколькими немецкими учеными.

 В основе обмена веществ лежит энергия, а в организме большую часть энергии вырабатывают митохондрии. 13 митохондриальных генов кодируют белки, которые используются в процессе метаболизма. Результатом работы митохондрий является образование АТФ – своеобразных энергетических консервов, используемых живой клеткой. Немецкие исследователи предположили, что при адаптации организмов к наземному образу жизни в генах митохондрий должны были происходить определенные изменения, направленные на повышение общей метаболической эффективности клетки.

 Искать следы этих изменений решено было у моллюсков, поскольку многие семейства именно этой группы животных осваивали сушу независимо. Благодаря этому есть возможность найти схожие генетические адаптации в разных эволюционных линиях. Нужно сказать, что подавляющее большинство прежних исследований приспособленности организмов к наземной жизни проводились на позвоночных. Однако беспозвоночные гораздо многочисленнее и разнообразнее – именно они составляют 95% всего разнообразия царства животных.

 Исследователи сравнивали митохондриальный геном моллюсков из клады Euthyneura – наиболее широко распространенных брюхоногих, обитающих в море, на литорали, в пресной воде и на суше. В ходе своей работы ведущий автор исследования Педро Ромеро (Pedro Eduardo Romero) из Исследовательского центра климата и биоразнообразия Зенкенберга и его коллеги установили, что у разных групп моллюсков, независимо освоивших сушу, изменению подверглись одни и те же митохондриальные гены – cob и nad5. Это свидетельствует о том, что на разные группы организмов влияли схожие силы отбора. Оба гена влияют на регуляцию выработки энергии, что согласуется с предположением, согласно которому переход к наземному образу жизни привел к увеличению затрат энергии.

 Митохондриальные белки крайне важны для организма и поэтому их структура и функции слабо различаются даже у неблизкородственных организмов. А это значит, что можно сравнить аминокислотные последовательности моллюсков с такими же последовательностями у дельфинов, летучих мышей, людей и крыс. В ходе такого сравнения было установлено, что следы отбора присутствуют в тех же аминокислотных позициях и у позвоночных.

 Таким образом, одна и та же адаптация к изменению энергетических потребностей может встречаться не только у позвоночных, но и у моллюсков. Одни и те же белки, а иногда и одни и те же аминокислотные последовательности подвергаются отбору при резком изменении энергетических потребностей, например у китов, при их переходе к морскому образу жизни, у летучих мышей, во время освоения ими полета, у грызунов, переходящих от жизни на поверхности к жизни под землей.

 Похоже, отмечают исследователи, что в резко изменяющихся условиях животные из разных групп получают очень схожие приспособления на уровне молекулярного аппарата, так как именно эти изменения являются ключевыми для удовлетворения возросших энергетических потребностей.

 Проведенная работа является всего лишь отправной точкой – в дальнейшем немецкие ученые намерены провести сравнение групп организмов, освоивших сушу, используя не только митохондриальный геном, но и полученные современными способами секвенирования полные геномы организмов. Все это должно помочь определить и другие молекулярные адаптации, позволившие нашим предкам освоить сушу.

 

 


 

Источник: PaleoNews


 

Опубликовано в Новости Генетики

Биологи из Карлова университета в Праге (Чехия), под руководством постодока Анны Карнковской (Anna Karnkowska), судя по всему, обнаружили первый эукариотический (то есть имеющей в своих клетках ядра) организм, лишенный митохондрий — органелл, служащих клеткам «энергетической станцией». Статью об этом, опубликованную в журнале Current Biology, пересказывает сайт журнала Science.

МитохондрияМитохондрияУникальный организм, обнаруженный учеными — это одноклеточное животное, жгутиконосец из рода Monocercomonoides. Забавно, что чешские биологи выделили его из экскрементов шиншиллы, живущей дома у одного из сотрудников лаборатории. Поскольку жгутиконосец относился к группе микробов, по поводу которой у ученых было подозрение, что у некоторых из ее представителей нет митохондрий, Карнковская с коллегами решили его проверить.

Расшифровав полный геном эукариота, авторы статьи не нашли в нем никаких митохондриальных генов (которые, теоретически, должны были быть, поскольку митохондрии обладают собственным ДНК). Более того, углубленный анализ показал также, что у этого представителя рода Monocercomonoides нет даже ни одного из ключевых белков, которые позволяют митохондриям функционировать. Иначе говоря, у него попросту нет митохондрий.

Как же этот жгутиконосец живет без «энергетических станций» в своей клетке? Очень просто: в кишечнике грызуна, в котором он обитает, в достатке питательных веществ, которые эукариот расщепляет с помощью ферментов, содержащихся в его цитоплазме (внутриклеточной жидкой среде). Зато в кишечнике шиншиллы нет кислорода, без которого митохондрии все равно работать не могут.

Надо сказать, что митохондрии играют в клетках и еще одну важную роль: они накапливают железо и серу, которые нужны для синтеза многих важных белков. Однако Monocercomonoides и здесь нашел альтернативное решение: похоже, он «позаимствовал» некоторые гены бактерий, которые позволяют делать это без митохондрий.

Похоже, что уникальный эукариот утратил митохондрии совсем недавно (по меркам эволюции) — у его ближайших родственников эти органеллы все же есть, хотя и уменьшенного размера.

«Это открытие фундаментальной важности, — сказал об открытии коллег из Карлового университета эволюционный биолог Юджин Кунин (Eugene Koonin) из Национального центра биотехнологической информации в Бетесда, Мэриленд (США). — Теперь мы знаем, что эукариоты могут отлично жить без митохондрий».

Эволюционный генетик Франц Ланг (B. Franz Lang) из Монреальского университета (Канада) высказался более осторожно: «Результаты этой работы выглядит очень солидно. Я бы сказал, вероятность того, что они правы, составляет 90%».

Ранее одно время считалось, что митохондрий нет у эукариотического микроба Giardia intestinalis, вызывающего диарею. Однако потом выяснилось, что они у него просто очень сильно редуцированы.

Открытие первого безмитохондриального эукариота заставляет по-новому взглянуть на ранние этапы эволюции жизни на Земле. До сих пор считалось, что наличие митохондрий — непременный признак всех эукариот. Согласно господствующей сейчас теории, митохондрии когда-то были самостоятельными бактериями, но потом наши одноклеточные предки проглотили их и, вместо того, чтобы переварить, поставили себе на службу. Или, согласно другой версии, митохондрии сперва были паразитами, но потом подружились с клеткой. Так или иначе, это объясняет, почему у митохондрий до сих пор сохранилась собственная ДНК.


Источник: Научная Россия


Опубликовано в Новости Микробиологии

Биологи Иэн Джонстон (Iain Johnston) из университета Бирмингема и Бен Уильямс (Ben Williams) из Кембриджского университета выяснили, как митохондриям — органеллам и «энергетическим станциям» живых клеток — удалось на протяжении сотен миллионов лет эволюции сохранить собственную ДНК. Результаты их исследования, подробно изложенные в журнале Cell Systems, кратко пересказывает сайт журнала Science.

МитохондрияМитохондрияЧтобы исследовать, почему и зачем в митохондриях сохранились остатки их ДНК, Джонстон и Уильмс проанализировали 2000 митохондриальных геномов самых разных существ, включая простейших одноклеточных, животных, растения и грибы. На основании этого анализа они реконструировали пути, по которым в разных ветвях эволюционного древа живых организмов развивалась митохондриальная ДНК.

Выяснилось, что в ней в основном сохранялись гены, кодирующие синтез особых белков, вокруг которых в митохондрии формируются белковые комплексы. Именно они играют ключевую роль в процессе передачи электронов через мембрану митохондрии, благодаря которому эти органеллы и способны вырабатывать энергию. «То, что эти гены остаются непосредственно в митохондрии, дает клетке возможность индивидуально контролировать ее работу», — объяснил Джонстон.

Ну а кодирование других белков, не столь важных для выполнения функции митохондрии, можно и «отдать на аутсорс» — в ДНК клеточного ядра.

Ученые уже достаточно давно пришли к выводу, что митохондрии когда-то были самостоятельными одноклеточными живыми существами. Потом наши столь же одноклеточные предки проглотили их, но, вместо того, чтобы переварить, поставили себе на службу, «заставив» вырабатывать энергию. Таким образом, остатки собственной ДНК — это своеобразный «рудимент» былой «свободы».

Большинство митохондриальных генов в процессе эволюции исчезли, или мигрировали в геном ядра клетки. Сейчас, например, в человеческих митохондриях всего 37 генов, а в ядре наших клеток, для сравнения — свыше 20 000. Но почему это небольшое количество генов все же сохранилось в митохондриях? Этот вопрос имеет отнюдь не только теоретическое значение: мутации в митохондриальной ДНК приводят к опасным наследственным заболеваниям.


Источник: Научная Россия


Опубликовано в Новости Генетики

Ученые с кафедры молекулярной биологии МГУ, под руководством младшего научного сотрудника Антона Кузьменко, совместно с коллегами из Швеции, обнаружили, что синтез белка в митохондриях пекарских дрожжей может проходить без участия одного из трех компонентов, которые до сих пор считались совершенно необходимыми для безъядерных клеток. Об этом открытии, полные результаты которого опубликованы в журнале Scientific Reports, рассказывается в пресс-релизе Московского университета.

1101161bde790bБелки в живой клетке синтезируются в соответствии с кодом матричной РНК (рибонуклеиновой кислоты), которая, в свою очередь, является «слепком» с нужного участка ДНК. Происходит процесс синтеза белка в особой органелле клетки — рибосоме. Активируют процесс синтеза специальные белки — факторы трансляции. У прокариот, то есть у организмов, клетки которых не имеют ядер (это бактерии и археи) факторов трансляции обнаружено три: IF1, IF2 и IF3. Что же касается эукариот — организмов с ядрами в клетках, в том числе и мы с вами — число этих факторов превышает 20.

Митохондрии — органеллы, «энергетические станции» наших клеток — теоретически должны были бы синтезировать белки как прокариоты. Дело в том, что, согласно господствующей сейчас в науке теории, митохондрии как раз и были когда-то самостоятельными одноклеточными безъядерными организмами, наподобие бактерий, которых наши опять же одноклеточные, но уже эукариотические предки «проглотили», но, вместо того, чтобы переварить, поставили себе на службу. В результате, у митохондрий остались многие черты самостоятельных организмов: собственная ДНК, и даже свои рибосомы, в которых тоже происходит синтез белка.

Ранее у митохондрий было открыто три белка-фактора трасляции: mtIF1, mtIF2 и mtIF3. Казалось бы, все «шло по плану», полностью согласуясь с теорией. Однако эксперимент ученых из Московского университета, имевший своей целью доказать, что фактор mtIF3 (идентифицированный позже других) так же необходим для синтеза белка, как и первые два, дал неожиданный результат.

Молекулярные биологи «вырезали» из митохондриальной ДНК пекарских дрожжей ген, кодирующий белок mtIF3, а на его место вставили ген устойчивости к антибиотику, добавленному к питательной среде, чтобы все клетки, в которых ген остался, погибли. К удивлению ученых, митохондрии выживших клеток, не имевшие третьего фактора трансляции, продолжали успешно синтезировать белки.

«Биосинтез белка в этих условиях шел, в целом, примерно с той же эффективностью, что и в нормальных дрожжевых митохондриях, но был сильно “разбалансирован”. Другими словами, некоторых митохондриальных белков в отсутствие mtIF3 действительно становилось меньше, зато количество других вырастало в несколько раз!» — рассказал ведущий научный сотрудник Петр Каменский, один из основных авторов исследования.

Скорее всего, предполагают теперь ученые, mtIF3 имеет и другие функции в клетке —  координирует соотношение производимых в митохондриях белков. Поскольку ранее была установлена связь между нарушением такой координации и развитием болезни Паркинсона, это открытие, возможно, поможет лучше разобраться в механизмах этой болезни и разработать новые методы ее лечения.

Кроме того, открытие ученых из МГУ открывает дорогу к более точному моделированию системы митохондриальной трансляции in vitro ( «в пробирке»). Такие модели, разработанные для эукариотических и бактериальных клеток, уже некоторое время помогают ученым тестировать лекарства (включая новые антибиотики) и ставить другие важные эксперименты.


Источник: Научная Россия


Опубликовано в Новости Цитологии

Генетики показали, что митохондрии, клеточные органеллы бактериального происхождения, сначала паразитировали на клетках и лишь затем стали снабжать их энергией.

МитохондрияМитохондрияОб этом говорится в статье американских ученых из Университета Вирджинии, опубликованной в журнале PLOS ONE.

Митохондрии называют клеточными энергетическими станциями, потому что в них протекают процессы окислительного фосфорилирования, итогом которых является синтез АТФ - молекул, служащих энергетической «валютой» клетки. Митохондрии происходят от свободноживущих бактерий, по каким-то причинам поселившихся в эукариотических клетках.

Долгое время считалось, что отношения митохондрий и клеток с самого начала строились как симбиоз. Однако было неясно, почему же началось их взаимовыгодное сотрудничество. Что предки митохондрий, еще не став специалистами в выработке АТФ, «с порога» могли предложить своим хозяевам? Авторы статьи сняли эту проблему, показав, что митохондриям не надо было ничего предлагать, поскольку они начинали свою «карьеру» в качестве паразитов.

Исследователи попытались реконструировать прошлое митохондрий, приняв во внимание не только их собственный геном, но и те гены, которые когда-то были митохондриальными, но затем вошли в состав генома клетки. Всего они выявили 394 таких гена и затем сравнили их с генами современных бактерий, считающихся родичами предков митохондрий.

Оказалось, что бактерии, давшие начало митохондриям, обладали АТФ/АДФ транслоказой, белком, который закачивал АТФ в обмен на АДФ, молекулу, образующуюся при расщеплении АТФ. Это значит, что первоначально митохондрии были энергетическими паразитами и отбирали у клеток АТФ. Но затем эукариотам удалось поставить бактерий-паразитов к себе на службу, изменив направление потока АТФ на противоположное.


Источник: infox.ru


Опубликовано в Новости Генетики

У всех есть свой предел — и у любителей побегать на выходных, и у олимпийцев. По-научному этот предел называется лактатным порогом: как только вы его перешагнули, начинаются неприятные ощущения. Наверное, каждому знакомо это чувство: сердце бешено колотится, вы хватаете ртом воздух, усталость в мышцах нарастает снежным комом, а потом они просто отключаются. Тем не менее на свете есть по крайней мере один человек, который избежал этой участи, несмотря на интенсивные тренировки. Его зовут Дин Карназес

Найти фотографию стоящего Дина Карназеса было непросто. (Фото Philip Anema/Zozi.) Найти фотографию стоящего Дина Карназеса было непросто. (Фото Philip Anema/Zozi.) Калифорниец справлялся с самыми тяжёлыми испытаниями: он бегал марафон до Южного полюса при температуре -25 °C и участвовал в знаменитом сахарском Marathon des Sables. И он ни разу не чувствовал ни жжения в мышцах, ни судорог, даже пробежав полторы сотни километров. «На определённой скорости я могу бежать очень долго, не уставая», — признаётся ультраспортсмен. Ему приходится ограничивать себя сознательно.

Во время физической работы организм расщепляет глюкозу, извлекая таким образом необходимую ему энергию. Побочным продуктом этих реакций и дополнительным источником энергии становится молочная кислота (лактат). При достижении определённого порога организм уже не способен расщеплять лактат так быстро, как он производится, и молочная кислота начинает накапливаться в мышцах. Тем самым тело даёт вам знать, что пора остановиться. Г-н Карназес ни разу в жизни не получал такого сигнала. 

«В конце концов я просто засыпаю, — говорит он. — Однажды я бежал трое суток без сна, и на третью ночь пережил что-то вроде психоза. Бывало, я засыпал прямо на ходу и только силой воли заставлял себя бежать дальше». 

Железная сила воли — общая черта всех сверхмарафонцев, но в 2006 году во время подготовки к тому, чтобы пробежать 50 марафонов за 50 дней, г-н Карназес обнаружил, что у него есть не только это. Аэробные тесты не показали ничего экстраординарного: обыкновенный высококвалифицированный спортсмен. Но тест на лактатный порог принёс сенсацию. «Мне сказали, что он займёт 15 минут максимум, — вспоминает атлет. — Но прошёл час, им пришлось остановить тестирование, и они признались, что никогда не видели ничего подобного». 

Как поясняет Лоран Мессонье из Савойского университета (Франция), аэробный тест определяет возможности сердечно-сосудистой системы, а лактатный порог (его ещё называют анаэробным) имеет отношение к способности удалять молочную кислоту из крови и преобразовывать её в энергию. «Если взять перспективного бегуна и тренировать его в течение длительного времени, его сердечно-сосудистая система улучшится до определённого момента, после которого добиться прогресса будет уже трудно, — рассказывает специалист. — Этот предел зависит от физиологии сердца и сосудов. Тем не менее дальнейшие тренировки, хотя и не улучшат аэробную способность, заметно повысят спортивные показатели, ибо лактатный порог определяется не состоянием сердечно-сосудистой системы, а качеством мышц». 

Организм выводит молочную кислоту из крови путём ряда химических реакций, обусловленных митохондриями в клетках мышц. Эти реакции преобразуют лактат обратно в глюкозу. Процесс ускоряется специфическими ферментами, а также зависит от размеров митохондрий (чем больше их ёмкость, тем активнее они смогут использовать молочную кислоту в качестве топлива). 

Годы тренировок приведут к тому, что ваши ферменты и митохондрии станут работать более эффективно. А если к тому же вы унаследовали способность к выработке особенно полезных ферментов и созданию митохондрий особенно большого размера, ваш личный лактатный порог будет намного выше, чем у других. 

Г-н Карназес влюблён в бег с раннего детства. Ещё в средней школе он демонстрировал такие успехи, которые намного превосходили показатели сверстников. На одном благотворительном мероприятии лучшие из его товарищей смогли сделать только 15 кругов по стадиону, а он — 105. Вскоре он по какой-то причине перестал бегать, но ближе к тридцати годам его вдруг захлестнуло, и он отправился в ночь. 

Большинство из нас, пропустив 15 лет тренировок, не убежали бы далеко, но г-н Карназес остановился только через 50 км! Мозоли болели, как проклятые, но мышцы не выказывали никаких признаков усталости. 

«Многие бегуны из спортивной элиты улучшают способность организма к выведению молочной кислоты за счёт долгих лет тренировок, но у всего есть предел, — говорит уникум. — Всё остальное, как мне сказали, это наследственность. Лучшее, что может сделать бегун на длинные дистанции, — это выбрать правильных родителей!» 

По-видимому, дело здесь не только в ферментах и митохондриях. Г-н Карназес считает, что определённую роль играют небольшое количество жира, низкая потливость, сильнощелочная диета, слабое воздействие экологических токсинов. Генетика действительно даёт некоторые преимущества, но гены выражаются по-разному в зависимости от окружающей среды и образа жизни. Г-н Мессонье согласен: если вырастить одного близнеца в Африке, а другого — в Северной Европе, их гены будут вести себя неодинаковым образом. 

Скорее всего, свет на загадку г-на Карназеса смог бы пролить эксперимент с его братом, который никогда не занимался спортом на износ и не знает своих истинных возможностей.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Антропологии

Самой известной и, пожалуй, самой популярной теорией происхождения митохондрий и хлоропластов является теория эндосимбиоза (или симбиогенеза). По ней, хлоропласты и митохондрии прежде были самостоятельными прокариотическими организмами (какими-нибудь древними бактериями или цианобактериям), которыми питались далёкие предки эукариот. В какой-то момент поедание бактерий сменилось симбиотическими отношениями: жертвы стали жить внутри охотника, обеспечивая его энергией, и в итоге превратились в знакомые всем хлоропласты и митохондрии. 

В общих чертах тут всё более-менее понятно, но что при этом происходило на клеточном уровне? Какими, например, характерными особенностями обладали клетки древнейших эукариот, которые первыми начали налаживать симбиотические отношения с поглощёнными бактериями? Почему вообще получилось так, что бактерии перестали расщепляться пищеварительными ферментами и оставались плавать в теле хозяина целыми и невредимыми? На эти и на многие другие вопросы ответов пока нет, хотя учёные интенсивно их ищут. Главная проблема, разумеется, в том, что все гипотезы и теории приходится строить на современном материале, на изучении нынешних простейших, так как ископаемых останков с тех далёких времён почти нет.

Но как можно узнать, что происходило миллионы и миллиарды лет назад, наблюдая за современным одноклеточными? Считается, что какие-то особенности структуры, какие-то особенности поведения нынешних простейших отчасти повторяют то, как вели себя их древнейшие предки. И здесь нужно добавить, что эндосимбиоз — по крайней мере тот, который привёл к появлению хлоропластов, — возникал в истории жизни несколько раз. Сначала были так называемые первичные эндосимбионты: древнейшие эукариоты, которые первыми поняли, что фотосинтезирующие цианобактерии можно использовать, так сказать, живьём. Из таких первичных эндосимбионтов впоследствии появились растения, зелёные и красные водоросли, а также своеобразная группа водорослей, называемых глаукофитами, чьи фотосинтезирующие органеллы чрезвычайно напоминают цианобактерии. 

Роль фагоцитоза древних эукариот в происхождении хлоропластов. (Рисунок авторов работы.) Роль фагоцитоза древних эукариот в происхождении хлоропластов. (Рисунок авторов работы.) Но были и такие организмы, которые использовали для эндосимбиоза не сами бактерии, а первичных эндосимбионтов. То есть другие древнейшие эукариоты поглощали других эукариот, у которых уже были приручённые фотосинтезирующие цианобактерии. Из таких вторичных и третичных эндосимбионтов получились криптофитовыегаптофитовые и гетероконтофитовые водоросли, а также эвгленоидеи. У потомков вторичных эндосимбионтов мембрана хлоропластов состоит не из двух, а из трёх слоёв. Считается, что самая внутренняя мембрана досталась хлоропластам от бактерии, а вторая, внешняя — от древнего эукариота, который, поглощая бактерию, заворачивал её в свою мембрану. В случае с трёхмембранными хлоропластами третья (самая внешняя) мембрана, как считается, досталась хлоропластам от нового хозяина, который заворачивал в свою мембрану другого эукариота с фотосинтезирующими элементами внутри. 

Однако в любом случае один из ключевых этапов — поглощение одного одноклеточного другим. Исследователи из Университета Далхаузи (Канада) и Американского музея естественной истории (США) утверждают, что древние эукариоты, которые впервые использовали хлоропластный симбиоз, поглощали бактерии не любой частью клетки, как амёбы, а с помощью специализированных структур. Учёные наблюдали за Cymbomonas, относящейся к одним из наиболее простых и древних зелёных водорослей. Хотя, как и все зелёные водоросли, Cymbomonas произошла от первичных эндосимбионтов, при этом, как оказалось, у неё сохранилась способность питаться бактериями. 

В статье, опубликованной в Current Biology, исследователи описывают пищеварительный аппарат водоросли Cymbomonas. Пища попадает в клетку через специальное отверстие, после чего по пищеводообразному каналу движется к постоянной пищеварительной вакуоли, аналогу желудка, причём пищевод может сокращаться, помогая пище продвинуться к «желудку». 

Такой способ поглощения не похож на то, что мы наблюдаем у других простейших, вроде амёб или инфузорий. Авторы работы полагают, что он достался Cymbomonas от предков, которые с его помощью приобрели первые хлоропласты. Сейчас бактерии, пойманные Cymbomonas, перевариваются в пищеварительной вакуоли, однако весь процесс поглощения пищи может быть моделью для изучения того, как бактерии в один прекрасный день избежали расщепления в вакуоли и превратились в домашних фотосинтетиков. 

В данном случае трудно сказать, что именно благодаря такому пищеварительному аппарату стало возможным «приручение» бактерий — тут могли сыграть свою роль и другие особенности физиологии древних эукариот. Но если именно такая схема поглощения пищи осуществлялась в каждом случае появления эндосимбиоза, это наводит на мысль, что это неспроста, что, очевидно, именно такой путь бактерии в клетку давал ей шанс уцелеть и развить симбиотические отношения.

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Эволюции

Самая популярная гипотеза возникновения хлоропластов и митохондрий состоит в том, что те и другие исходно были бактериями и попали в клетки пра-(пра)-праэукариот в качестве паразитов и/или симбионтов. Потом одни бактериальные гости превратились в митохондрии и произвели тем самым революцию в энергоснабжении клетки, а другие стали хлоропластами, и с этого момента началась эволюция растений.

Хлоропласты в растительной клетке. (Фото BASF - The Chemical Company.)Хлоропласты в растительной клетке. (Фото BASF - The Chemical Company.)Но когда это произошло? События настолько древние, что ни о каких точных датах говорить не приходится. А приблизительность оценок такова, что, например, время появления эукариот «плавает» от 800 млн до 3 млрд лет назад. С такой же «точностью» определяют и время возникновения хлоропластов и митохондрий.

Но исследователям из Калифорнийского университета в Беркли (США) всё-таки удалось внести некую ясность в вопрос. До сих пор подобные оценки основывались на трудноразличимых микробных следах в палеонтологических находках и не очень внятных биохимических маркерах, которые удавалось в таких следах обнаружить. Николас Матцке и Патрик Ши пошли по другому пути: они оценивали возраст митохондрий и хлоропластов по их же генам. Как известно, эти органеллы имеют собственную ДНК и собственную молекулярную машинерию для белкового синтеза. Оставалось только понять, какие гены у них могли меньше всего измениться с тех незапамятных времён, когда и митохондрии, и хлоропласты были самостоятельными организмами.

Митохондрии в клетке лёгких. (Фото Kallista Images.)Митохондрии в клетке лёгких. (Фото Kallista Images.)В итоге исследователи остановились на генах АТФ-синтаз — белках, которые непосредственно отвечают за синтез главной энергетической молекулы любой клетки, АТФ. Эти белки есть и в ядерном геноме, и в митохондриальном, и в хлоропластном. Они очень консервативны, и по изменениям в них можно оценить, когда происходили самые важные события в жизни на Земле. Разумеется, сравнивая изменения в генах ядра и органелл, учитывалось, что все они менялись неравномерно, с разной скоростью. Кроме того, авторы работы использовали палеобиологические данные, полученные от растительных и животных останков, которые считаются более надёжными свидетелями, нежели ископаемые микробы.

В статье в PNAS исследователи пишут, что древние протеобактерии, от которых, скорее всего, пошли митохондрии, проникли в эукариотические клетки около 1,2 млрд лет назад. Это не слишком расходится с более ранними оценками. Но с ними сильно расходится возраст растительного фотосинтеза, который, как сказано в статье, «родился» 900 млн лет назад, когда первые цианобактерии попали в клетки древних праэукариот. Цианобактерии научились фотосинтезировать давно (они вообще жили на Земле уже во времена архея), однако до сих пор считалось, что их совместная жизнь с эукариотами началась гораздо раньше, едва ли не 2 млрд лет назад.

В целом такой подход, по словам авторов работы, позволяет снизить неопределённость временнóй оценки на 14–6%. Так что, возможно, палеобиологи вскоре смогут пользоваться не столь широкими и неопределёнными рамками, какие были в ходу до сих пор, особенно в отношении событий, происходивших миллиарды лет назад.

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Эволюции

Более миллиарда лет прошло от появления одноклеточных до "изобретения" ядра клетки и рождения ряда других новшеств. Только тогда открылась дорога к первым многоклеточным существам, давшим начало трём царствам животных, растений и грибов. Европейские учёные выдвинули новое объяснение этого преображения, идущее вразрез с существовавшими до сих пор представлениями.

Эукариоты сумели завоевать мир  в первую очередь потому, что  придумали митохондрии –  специализированные  энергетические узлы клетки (на  этой модели они показаны  розовым) (фото Donald Bliss,  Sriram Subramaniam, National  Library of Medicine, NIH) Эукариоты сумели завоевать мир в первую очередь потому, что придумали митохондрии – специализированные энергетические узлы клетки (на этой модели они показаны розовым) (фото Donald Bliss, Sriram Subramaniam, National Library of Medicine, NIH) Прокариоты (доядерные одноклеточные) родились приблизительно 3,8 миллиарда лет назад. Более продвинутые по строению организмы — эукариоты (их клетки содержат ядро) — возникли более двух миллиардов лет назад. И от них порядка одного миллиарда лет назад уже стартовала эволюция многоклеточных существ.

Длина митохондрий колеблется примерно от 1 до 70 микрометров,  а диаметр – от 0,5 до 10 мкм (иллюстрация Odra Noel)Длина митохондрий колеблется примерно от 1 до 70 микрометров, а диаметр – от 0,5 до 10 мкм (иллюстрация Odra Noel)Теперь два таких создания – Ник Лейн (Nick Lane) из университетского колледжа Лондона (UCL) и Уильям Мартин (William Martin) из института ботаники университета Дюссельдорфа – разработали оригинальную теорию. По ней выходит, что ключом к появлению эукариот стало не изобретение ядра (как рассуждали учёные 70 лет), а возникновение митохондрий.

Принято считать, что сначала от прокариот родились более совершенные ядерные клетки, полагавшиеся на старые энергетические механизмы, а уже позже новобранцы обзавелись митохондриями. Последним отводилась важная роль в дальнейшей эволюции эукариот, но не роль краеугольного камня, лежащего в самой её основе.

"Мы показали, что первый вариант не сработает. Для развития сложности клетки ей необходимы митохондрии", — поясняет Мартин. "Наша гипотеза опровергает традиционную точку зрения, будто переход к эукариотическим клеткам требовал только лишь надлежащих мутаций", — вторит ему Лейн.

По теории симбиогенеза, митохондрии (так же как и пластиды) первоначально были отдельными одноклеточными организмами. Их захватили другие клетки, превратив в эндосимбионтов. Постепенно "квартиранты" утратили способность к самостоятельному существованию и превратились в органоиды.

Уильям и Ник говорят, что этот удачный шаг случился лишь один раз за всю историю эволюции. Вместо того чтобы стать паразитом и эксплуатировать клетку-хозяина, убивая её, предок митохондрии и приютившая его клетка пошли на сотрудничество.

Митохондрии внутри клетки (флуоресцируют зелёным). На врезках:  Мартин (слева) и Лейн. Детали нового исследования можно найти в  статье в Nature и пресс-релизе UCL (фотографии Douglas Kline,  molevol.de, nick-lane.net). Митохондрии внутри клетки (флуоресцируют зелёным). На врезках: Мартин (слева) и Лейн. Детали нового исследования можно найти в статье в Nature и пресс-релизе UCL (фотографии Douglas Kline, molevol.de, nick-lane.net). Они развивались совместно, при этом эндосимбионт постепенно оттачивал одно умение — синтез АТФ. Внутренняя клетка уменьшалась в размерах и передавала часть своих второстепенных генов в ядро. Так митохондрии оставили у себя лишь ту часть исходной ДНК, что была им необходима для работы в качестве "живой электростанции".

Число митохондрий (показаны красным) в одной клетке варьируется от  единственного экземпляра (в основном в одноклеточных эукариотах) до  двух тысяч (например, в клетках печени человека)  (иллюстрация Odra Noel)Число митохондрий (показаны красным) в одной клетке варьируется от единственного экземпляра (в основном в одноклеточных эукариотах) до двух тысяч (например, в клетках печени человека) (иллюстрация Odra Noel)Появление митохондрий в плане энергетики можно сравнить с изобретением ракеты после телеги, ведь ядерные клетки в среднем в тысячу раз больше по объёму, чем клетки без ядра.

Последние, казалось бы, тоже могут расти в размерах и сложности устройства (тут есть единичные яркие примеры). Но на этом пути крохотных существ ждёт подвох: по мере геометрического роста быстро падает отношение площади поверхности к объёму.

Между тем простые клетки генерируют энергию при помощи покрывающей их мембраны. Так что в крупной прокариотической клетке может быть полным-полно места для новых генов, но ей просто не хватит энергии для синтеза белков по этим "инструкциям".

Простое увеличение складок внешней мембраны положение не особо спасает (хотя и такие клетки известны). С данным способом наращивания мощности увеличивается и число ошибок в работе энергетической системы. В клетке накапливаются нежелательные молекулы, способные её погубить.

Митохондрии — блестящее изобретение природы. Увеличивая их количество, можно наращивать энергетические возможности клетки без роста её внешней поверхности. При этом каждая митохондрия обладает ещё и встроенными механизмами контроля и ремонта.

И ещё плюс инновации: митохондриальная ДНК невелика и очень экономна. Для её копирования не требуется много ресурсов. А вот бактериям, чтобы нарастить свои энергетические возможности, остаётся разве что создавать множество копий полного своего генома. Но такое развитие быстро приводит к энергетическому тупику.

Сравнение энергетики разных клеток  и их схемы. a) – средний прокариот  (Escherichia), b) – очень крупный  прокариот (Thiomargarita) и  (c) средний эукариот (Euglena).  На диаграммах показаны (сверху вниз):  мощность (ватты) на грамм клетки (d),  мощность (фемтоватты) на один ген (e)  и мощность (пиковатты) на гаплоидный  геном (f) (иллюстрации Nick Lane,  William Martin/Nature).  Сравнение энергетики разных клеток и их схемы. a) – средний прокариот (Escherichia), b) – очень крупный прокариот (Thiomargarita) и (c) средний эукариот (Euglena). На диаграммах показаны (сверху вниз): мощность (ватты) на грамм клетки (d), мощность (фемтоватты) на один ген (e) и мощность (пиковатты) на гаплоидный геном (f) (иллюстрации Nick Lane, William Martin/Nature)Авторы работы посчитали, что средняя эукариотическая клетка теоретически может нести в 200 тысяч раз больше генов, чем средняя бактерия. Эукариот можно представить как библиотеку с большим числом полок — заполняй книгами вволю. Ну а более протяжённый геном — это основа для дальнейшего совершенствования строения клетки и её метаболизма, появления новых регуляторных цепей.

По вычислениям Лейна и Мартина, на каждый ген своего наследственного кода эукариоты располагают на четыре-пять порядков большим запасом энергии, чем бактерии. С этой точки зрения бактерии находятся на дне энергетической пропасти, выбраться из которой они не могут.

Переход клеток к выработке энергии с помощью митохондрий можно сравнить с промышленной революцией. Вместо того чтобы линейно наращивать размер мануфактуры, клетки пошли на качественное изменение: они построили "завод" и поставили в него ряды специализированных "станков".

Потому, несмотря на миллиарды лет существования, прокариоты и поныне остались относительно простыми существами, а эукариоты давным-давно изобрели новые средства передачи сигналов между клетками и шагнули в сторону многоклеточных форм жизни. Нас с вами.

Теория европейских учёных, кстати, может пригодиться и в оценке вероятности существования сложных форм жизни на других мирах.

Дело в том, что примеры поглощения бактериями других клеток — крайне редки. Это означает, что, однажды возникнув, жизнь на многие эоны может задержаться на простой одноклеточной стадии. До тех пор, пока счастливый случай не поможет ей изобрести внутриклеточные энергетические фабрики. "Основные принципы являются универсальными. Даже инопланетянам необходимы митохондрии", — заключает Лейн. 


 

Источник: MEMBRANA


 

 

Опубликовано в Новости Эволюции

Сравнение геномов митохондрий эукариот и морских бактерий SAR11 привело учёных к выводу, что SAR11 и митохондрии произошли от одного общего предка.

Место митохондрий в родословной альфапротеобактерий (схема авторов)Место митохондрий в родословной альфапротеобактерий (схема авторов)Миллиарды лет назад случилось одно из самых удивительных событий в истории жизни на Земле: какая-то бактерия вошла в эукариотическую клетку на правах постоянного симбионта и превратилась в клеточную органеллу митохондрию. Сейчас митохондрии выполняют в клетке энергетические функции, оставаясь до некоторой степени «государством в государстве»: у них есть своя ДНК, свой белкосинтезирующий аппарат, немного отличающийся от клеточного, и даже в генетическом коде у них есть свои особенности.

Учёные уже давно стараются определить, кого из бактерий можно назвать ближайшими родственниками митохондрий, но до сих пор всё ограничивалось лишь более или менее приблизительными гипотезами.

    Исследователи из Университета Гавайев и Орегонского университета (оба — США), которые предприняли масштабный поиск родственников митохондрий, сообщают в журнале Nature Scientific Reports, что их изыскания увенчались успехом. Учёные сравнили геномы различных супергрупп эукариот (архепластидовых водорослей, водорослей хромистов и простейших Excavata) с геномом бактерий SAR11. Эти альфапротеобактерии — родственники внутриклеточных паразитических бактерий риккетсий. Из-за риккетсий, способных к внутриклеточному паразитизму, альфапротеобактерии считались первыми среди кандидатов на роль предков митохондрий. Но, в отличие от риккетсий, бактерии группы SAR11 являются свободноживущими морскими организмами, к тому же самыми многочисленными (на их долю приходится от четверти до половины всей бактериальной биомассы моря); доминирующий род среди них — Pelagibacter. Их роль в экосистеме столь велика, что не будет преувеличением назвать их ответственными за круговорот углерода на Земле.

Трудность анализа состояла в том, что сравнивались не отдельные гены, а геномы. Но, по словам исследователей, именно такой подход позволил установить ближайшее родство между митохондриями и бактериями SAR11. Физиология позволяет им легко попасть в зависимость к другому организму, а многочисленность этой группы наводит на мысль о том, что в прошлом у SAR11 таких возможностей было множество.

Скорее всего, как заключают исследователи, и нынешние SAR11, и митохондрии имеют одного прямого предка. Если к этому добавить ещё и роль этих бактерий в экосистеме планеты, то Pelagibacter вполне можно уподобить мифической черепахе, держащей на себе всю биомассу Земли.


Источник:  КОМПЬЮЛЕНТА


 

Опубликовано в Новости Генетики

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Черепах породнили с птицами

25-05-2012 Просмотров:14150 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Черепах породнили с птицами

Генетические данные говорят о том, что черепахи произошли от общего предка птиц и крокодилов, а не от более древних групп рептилий. Эволюционные корни черепах долгие годы занимают ученых. Согласно данным палеонтологов...

Почему крупные звери редко болеют раком

22-01-2013 Просмотров:13616 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Почему крупные звери редко болеют раком

В 1970-е годы британский эпидемиолог Ричард Пето из Оксфорда обратил внимание, что вероятность раковых заболеваний у крупных животных ничуть не больше, чем у мелких. Между тем всё должно было быть...

В Китае обнаружена колония древних летающих ящеров

07-06-2014 Просмотров:8239 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Китае обнаружена колония древних летающих ящеров

Палеонтологи обнаружили в Китае десятки скелетов птеродактилей и их яйца. Находка доказывает, что эти летающие рептилии образовывали колонии, подобно некоторым современым птицам. ЯйцоОб этом говорится в статье китайских ученых из Института палеонтологии позвоночных и...

Китайские ученые обнаружили в янтаре древнее морское существо возрастом 100…

24-01-2018 Просмотров:3552 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Китайские ученые обнаружили в янтаре древнее морское существо возрастом 100 млн лет

   Китайские палеонтологи совместно с коллегами из Австрии и Канады впервые в истории обнаружили сохранившиеся в янтаре останки древнего морского существа - остракода, возраст которого составляет 100 млн лет. Об этом...

Пингвины-супруги удивили ученых верностью друг другу

10-09-2015 Просмотров:6765 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Пингвины-супруги удивили ученых верностью друг другу

Биологи выяснили, что хохлатые пингвины находят своих партнеров после полугодовой разлуки, преодолевая разделяющие их тысячи километров. Хохлатый пингвин (Eudyptes chrysocome)Об этом говорится в статье бельгийских ученых из Университета Антверпена, опубликованной в журнале Biology...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.