Fuxianhuia protensa (здесь и ниже фото авторов работы)В числе последних — небольшое беспозвоночное
Подобно другим окаменелостям из Чэнцзяна (провинция Юньнань) образцы Fuxianhuia оказались быстро погребены в среде с низким содержанием кислорода, что спасло их от бактериального разложения. У некоторых особей сохранились даже детали внутренних органов. Нервная анатомия выглядит как концентрация коричневого, богатого железом пигмента. Учёные распознали в этом мозг благодаря тому, что своими размерами, очертаниями и положением он напоминал мозг креветок из рода Исследователи интерпретируют эти тёмные пятна как мозг и зрительные доли
Мозг членистоногого состоял из трёх сегментов, которые сливались у рта, имеются также следы нервной ткани в глазных стебельках. Г-н Эджкомб полагает, что поразительное сходство нейронной анатомии образца и современных насекомых и некоторых ракообразных указывает на «довольно сложный мозг». Возможно, он развился с тем, чтобы обрабатывать зрительную информацию, получаемую в сравнительно высоком разрешении. Это утверждение соответствует гипотезе о том, что эволюция в кембрии протекала в виде гонки вооружений между хищником и жертвой. Судя по предполагаемым визуальным способностям Fuxianhuia и останкам трилобитов, обнаруженным в кишечнике родственных видов, кембрийское членистоногое было хищником, полагавшимся на острое зрение.
Появление сложного мозга в такой древности не может не удивлять (эксперты сравнивают это с появлением кошки среди голубей) и поднимает новые вопросы. Можно ли говорить о том, что такая нейронная анатомия была одной из ранних черт членистоногих? Или же она развилась ещё раз позднее?
И не все комментаторы не готовы принять предложенную интерпретацию.
Палеобиолог
Исследователи интерпретируют эти тёмные пятна как мозг и зрительные доли
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
У
Отличить западный подвид домовой мыши от восточного неспециалисту довольно трудно. (Фото Enda Flynn.)Обычно скрещивание между подвидами, хотя и происходит без проблем, приводит к появлению менее плодовитого, чем родители, потомства. Поэтому подвиды, занимающие разные ареалы, постепенно превращаются в новые виды.
У домовой мыши, однако, всё обстоит наоборот: по меньшей мере последние 6 тыс. лет гибриды восточного и западного подвидов процветают. Исследователи из
Зоологи проверили 212 мышей, пойманных в «гибридной зоне», на качество спермы и принадлежность к тому или иному подвиду. Оказалось, что наличие «восточной» Y-хромосомы обеспечивает на 6 млн сперматозоидов больше. Иными словами, восточный подвид производит больше потомства и тем самым гарантирует продвижение своей Y-хромосомы на запад. Последняя обеспечивает жизнеспособность и высокую численность гибридов, из-за чего оба подвида так и не сумели разойтись.
Будет ли так продолжаться, сумеет ли «восточная» Y-хромосома захватить всех мышей и повысить им рождаемость, исследователи предсказать не берутся. Скорее всего, нет, поскольку более мелкие популяции имеют свои генетические особенности, а потому далеко не всем чужая Y-хромосома придётся ко двору.
Учёные полагают, что дальнейшее исследование сверхплодовитой хромосомы может быть актуальным не только для эволюционной экологии, но и для физиологии человека. В последнее время всё чаще появляются данные, что сперма современных мужчин становится хуже, так что, возможно, домовые мыши с их волшебной Y-хромосомой подскажут какое-нибудь решение этой проблемы.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Новокаледонский ворон орудует палочкой. (Фото UoB University Graduate School.)Новокаледонские вóроны, иными словами, лучше видят перед собой.
Второе, с чем им повезло, — форма клюва. Когда ворон берёт в клюв палочку, то её конец, который выступает впереди, попадает как раз в поле зрения птицы. Другой конец палочки выходит у основания клюва и упирается в щёку. Палочка держится ровно и крепко, не болтается ни влево, ни вправо, ни вниз, ни вверх. Благодаря особенному прямому клюву новокаледонские вóроны всегда держат инструмент перед собой в поле зрения (которое у них, как было сказано выше, ещё и довольно широкое). И именно благодаря этому птицы могут совершать весьма точные манипуляции — например, погружать прутик в небольшое отверстие.
Это ни в коей мере не повод усомниться в интеллекте новокаледонских воронов. Выводы зоологов следует интерпретировать так, что развитый мозг — это ещё не всё. Чтобы реализовать свои идеи, ему нужно подходящее тело. Возможно, в развитии мозга галки и грачи не уступают новокаледонским вóронам, однако их глаза и клюв не позволяют им проявить скрытые способности. Много ли мы сделали бы, имея глаза где-нибудь на запястье? Или хотя бы на локте? Мы можем так ловко манипулировать руками и инструментами потому, что видим их перед собой: очевидная вещь, над которой почти никто не задумывается. У птиц же глаза, которыми они наблюдают за работой, и клюв, которым они эту работу делают, чрезвычайно сближены. Из этого следует ещё один вывод (правда, не столь очевидный): не следует по одним и тем же критериям оценивать разумность существ, так сильно различающихся строением тела.
Результаты исследования опубликованы в журнале
Источник: КОМЬЮЛЕНТА
Некоторые исследователи берут на себя смелость утверждать, что и сегодня можно выделить ДНК динозавров, ведь никто не знает, сколько времени уходит на распад генетического материала...
Одна из музейных реконструкций птицы моа (фото Stephen Janko)Точнее, не знал, ибо изучение окаменелостей из Новой Зеландии позволило приблизительно установить период полураспада ДНК и окончательно развеяло надежды на клонирование тираннозавра.
После гибели клетки ферменты начинают разрушать связи между нуклеотидами, формирующими основу ДНК. Распад ускоряют микроорганизмы, а в долгосрочной перспективе за деградацию большинства связей отвечает вода. Подземные воды повсеместны, поэтому ДНК в костях, по идее, должна распадаться с возрастающей скоростью.
Определить эту скорость оказалось трудным делом, ибо редко удаётся найти большое количество ДНК-содержащих окаменелостей, которые позволили бы провести сравнение. Что ещё хуже, на темпы распада влияют переменные окружающей среды: температура, степень биохимической активности микроорганизмов, показатель оксигенации и пр.
Но палеогенетики под руководством
Сравнив возраст и степень деградации генетического материала костей, исследователи подсчитали, что период полураспада ДНК составляет 521 год. Иными словами, за это время уничтожается половина связей между нуклеотидами, затем распадается половина оставшихся, и так далее.
Учёные полагают, что даже при температуре, идеальной для сохранения генетического материала (−5 ˚C), каждая связь будет разрушена максимум за 6,8 млн лет (при отрицательной температуре период полураспада ДНК может достигать 158 тыс. лет). В реальности же ДНК перестаёт быть читаемой гораздо раньше: достаточно примерно 1,5 млн лет, чтобы нити ДНК стали слишком короткими и перестали давать осмысленную информацию.
Поэтому разговоры о том, что хорошо бы выделить ДНК динозавров или насекомых, попавших в янтарную ловушку, можно прекратить.
В то же время ряд специалистов хотел бы взглянуть на аналогичные исследования окаменелостей из вечной мерзлоты, ведь очевидно, что кости, хранившиеся при других условиях, могут дать иной результат. Действительно, анализ останков моа показал, что различия в возрасте отвечают лишь за 38,6% расхождений в степени деградации ДНК. Очевидно, на скорость влияют и условия хранения образца после раскопок, и химический состав почвы, и даже время года, в которое скончалось животное.
Самая старая ДНК на сегодня принадлежит насекомым и растениям, найденным во льдах возрастом от 450 до 800 тыс. лет.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
В куске янтаря впервые обнаружен паук, застывший в броске на запутавшуюся в паутине жертву.
Изображение авторов работыУчастники этой драмы жили 97−110 млн лет назад (ранний меловой период) в долине Хукаунг, что на севере Мьянмы.
Стоит отметить, что, помимо непосредственных действующих лиц, на паутине находится ещё один самец. Таким образом, перед нами древнейший пример социального поведения среди пауков, которое встречается по сей день у некоторых видов, но весьма редко. Большинство пауков предпочитают жизнь одиноких каннибалов, и самцы без стеснения атакуют незрелых особей, оказавшихся на их паутине. А тут складывается такое впечатление, что хозяин не собирался вмешиваться в намерение юноши заняться крошечным наездником.
Считается, что пауки появились примерно 200 млн лет назад, но древнейшим образцам паутины лишь около 130 млн лет. Здесь сохранилось целых пятнадцать нитей. Сцена нападения паука на жертву в паутине и вовсе ни разу не встречалась в летописи окаменелостей.
Джордж Пойнар-младший из Университета штата Орегон (США) и его коллеги относят пауков к семейству кругопрядов, а самца наездника, в бессильном ужасе наблюдающего за приближением убийцы, — к той разновидности, которая паразитирует на пауках, поэтому можно считать, что наступил час расплаты. Ещё секунда, и свершилась бы месть, но в дело вмешалась смола древнего дерева...
Все персонажи этой истории представляют давно вымершие виды.
Результаты исследования опубликованы в журнале Historical Biology.
Источник: КОМПЬЮЛЕНТА
Сон необходим человеку для консолидации памяти, сортировки впечатлений, полученных во время бодрствования, и записи их в долговременные нейронные цепи. Ведущую роль в этом играют три раздела мозга: неокортекс, энторинальная кора и гиппокамп.
Нейрон энторинальной коры (фото mikeeconomo)Во время сна эти зоны начинают интенсивный диалог, и, как считается, именно в этот момент происходит запись долговременной памяти. Причём ведущую роль в консолидации памяти отводили неокортексу и гиппокампу. Однако детали этого обмена информацией долгое время ускользали от учёных.
Нейрофизиологи из Калифорнийского университета в Лос-Анджелесе (США) сумели записать одновременную активность нейронов всех трёх вышеупомянутых участков мозга, что и позволило представить процесс обработки информации хотя бы в общих чертах.
Известно, что бóльшую часть сна неокортекс проводит в медленноволновой активности, периодически переходя из активного состояния в пассивное и обратно. На деятельность неокортекса реагирует энторинальная кора. Её можно разделить на внешнюю и внутреннюю. Так вот, по словам исследователей, внешняя часть полностью повторяет действия неокортекса: когда новая кора работала, активизировалась и внешняя часть энторинальной коры. Необычным было другое: когда неокортекс замолкал, тут же просыпалась внутренняя область энторинальной коры, как будто повторяя только что «сказанное» неокортексом. При этом активные нейроны внутренней части энторинальной коры побуждали к работе и гиппокамп. И наоборот: когда начинал активничать неокортекс, гиппокамп замолкал. То есть во время сна (а эксперименты ставились на спящих мышах) три зоны мозга, отвечающие за память, находятся в сложном диалоге, последовательность реплик в котором мы теперь немного представляем.
Странность полученных результатов состоит в том, что, как полагали ранее, энторинальная кора занимается исключительно кратковременной памятью. То есть она держит «в уме» только что полученный стимул. Например, если мы идём от одного человека с поручением к другому, то это поручение держится в энторинальной коре. Однако, как пишут исследователи в журнале Nature Neuroscience, эта зона кратковременной памяти активизировалась не только во сне, но даже под анестезией, когда никакие внешние стимулы до мозга уж точно не доходят. То есть в деле записи долговременной памяти энторинальная кора — полноправный участник.
Кроме того, как опять же считалось, в этом процессе ведущая роль принадлежит гиппокампу, который управляет активностью неокортекса. В действительности же всё, по-видимому, выглядит с точностью до наоборот: неокортекс дирижирует двумя другими партнёрами, которые подстраиваются под его ритмы и выслушивают его реплики, чтобы потом повторить.
Тут следует заметить, что есть клинические данные, которые подтверждают полученные результаты, хотя бы и косвенно. Например, болезнь Альцгеймера начинается с энторинальной коры, а её первые симптомы — нарушение именно долговременной памяти и сна. Полученные результаты, несомненно, имеют большое фундаментальное значение, но можно ли применить их к лечению расстройств памяти, исследователи пока сказать не могут.
Источник: КОМПЬЮЛЕНТА
В Южном океане вокруг айсбергов формируются настоящие «оазисы» жизни. Ученые обнаружили там множество обитателей, которых айсберги подкармливают органикой.
Айсберг (википедия)Международная группа ученых под руководством профессора Кена Смита (Ken Smith) из Института подводных исследований в заливе Монтерей (США, Калифорния) обнаружила, что вокруг айсбергов в Южном океане формируется особая, обогащенная органикой среда. Она привлекает множество обитателей – диатомовых водорослей, мелких рачков и рыб. Ученые пришли к выводу, что айсберги выносят в океан продукты выветривания горных пород, которые прекрасно удобряют окрестные воды. Дело в том, что материковые ледники, которые с континента сползают в океан (так и формируются айсберги), захватывают обломки горных пород, в числе прочих элементов богатых железом.
Океанологи проводили исследования в районе моря Уэделла в течение трех лет. Они наблюдали за айсбергом С-18а, высота которого достигала 28 метров, длина —35 километров, а ширина — 6 километров. Ученые определяли химический состав воды и видовое разнообразие водных обитателей в радиусе 30 км от айсберга. А три специальных автоматических погружаемых аппарата проводили те же самые измерения на глубине 600 метров. Все измерения делались по мере движения айсберга, который передвигался со скоростью примерно 40 сантиметров в час.
«Мы обнаружили повышенные концентрации железа на расстоянии 30 км от айсберга и на глубине 600 метров. Биомасса в пределах этой зоны в два раза превышала биомассу в открытом океане. Можно сказать, что вокруг айсберга формируется такой хвост, обогащенный органикой», — рассказывает Кен.
Процветанию организмов, как утверждают ученые, способствует высокая концентрация железа в воде. О важной роли этого элемента для морских экосистем говорили многие исследователи. Например, ученые из Института морских исследований Альфреда Вегенера экспериментально доказали, что если удобрить океан железом, это приведет к настоящему «взрыву» численности фитопланктона. Но это касается искусственных источников железа в океане. А как утверждает профессор Кен, существуют еще и естественные – это аэрозоли и айсберги. Правда, если из атмосферы с аэрозолями в океан попадает мизерное количество железа, то айсберги– вполне ощутимый источник этого элемента.
По словам Кена, свойство айсбергов «удобрять» океан очень важно учитывать при расчетах способности океана поглощать углекислый газ. Если айсберги –оазисы, вокруг которых бурлит жизнь, значит, обилие обитающего вокруг них фитопланктона поглощает углекислый газ. А дальше по пищевой цепочке углерод включается в цикл и в конце концов в виде скелетов и раковин морских организмов оказывается на дне океана.
Статью о способности айсбергов подкармливать океан необходимыми для живых организмов элементами можно прочитать в журнале Deep Sea Research Part II: Topical Studies in Oceanography.
Источник: Infox.ru
Губки возникли ещё до того, как у многоклеточных появилась мышечная ткань. Но они способны двигаться за счёт сокращений покровных, эпителиальных клеток. Учёные полагают, что эти клетки губок являются древнейшими предками мышечной ткани у животных.
Морская губкаЛюбое животное, от улитки до гепарда, двигается за счёт сокращения и расслабления мышц. Существует, однако, группа многоклеточных организмов, которые возникли ещё до того, как в эволюции появились мышечные клетки, — это губки. И тем не менее губки тоже могут двигаться: то, что они сжимаются, если их потревожить, люди знают с античных времён.
Зоологи из Йенского университета имени Фридриха Шиллера (Германия) решили выяснить, за счёт чего движутся губки. У этих организмов, как считается, простая, дотканевая организация: их клетки не обладают резко различной структурой. До сих пор полагали, что за сокращение тела отвечают веретенообразные клетки, пронизывающие толщу тела губки. Чтобы однозначно ответить на этот вопрос, исследователи получали трёхмерные изображения микросрезов губок в разных состояниях (технология называется трёхмерным волюметрическим анализом).
В статье, опубликованной в издании Journal of Experimental Biology, исследователи показывают, что своими двигательными способностями губки обязаны эпителиальным клеткам — пинакоцитам, которые выстилают наружную поверхность тела, а также стенки крупных каналов. Предположительно, покровные клетки инициируют сокращение, а уже в сжатом виде губка удерживается благодаря веретенообразным клеткам в глубине тела.
Открытие немецких зоологов не только отвечает на вопрос, за счёт чего сокращаются губки, но и проливает свет на происхождение мышечной ткани. До сих пор приходилось считать, что мышечная ткань возникла в прямом смысле из ниоткуда: эволюционных предков мышечной клетки обнаружить не удавалось. Хотя сходство между покровными клетками губок и мышечными клетками других животных много раз отмечалось, только сейчас удалось получить прямые доказательства сократительной функции эпителиальных пинакоцитов у губок. Но чтобы окончательно записать эти клетки в предки мышечной ткани, нужны генетические подтверждения родства между этим «переходным звеном» и настоящими мышечными клетками.
Источник: КОМПЬЮЛЕНТА
Плоские черви планарии во взрослом состоянии сохраняют «всемогущие» стволовые клетки, способные превратиться в клетку любой другой ткани и органа. При сильных повреждениях одна такая клетка фактически может заново создать взрослую планарию.
ПланарияФантастические способности планарий к регенерации известны давно. Если разрезать этого плоского червя на 100 фрагментов, то каждый из них восстановит полноценный организм, со всеми системами и внутренними органами. Но источник таких регенерационных способностей долгое время оставался неизвестным.
Оказалось, что у взрослых планарий в организме остаётся заметная популяция эмбриональных стволовых клеток, из которых развиваются клетки любого типа. Многие животные, в том числе человек, сохраняют стволовые клетки до зрелого возраста, но они не имеют универсальности. Так, гематопоэтические стволовые клетки могут дать только клетки крови; стволовые клетки кожи способны восстанавливать лишь покровы тела, кожу и волосы.
Питер Реддин из Медицинского института Говарда Хьюза вместе с коллегами из Массачусетского технологического института решил выяснить способности стволовых клеток планарий. Чтобы подавить способность клеток червей к делению, исследователи подвергали планарий радиационному облучению; при этом выбранная доза радиации позволяла выжить некоторым необластам (клеткам, которые мигрируют в зоны поражений и заживляют раны, образуя здоровую ткань). Такие необласты, когда их потом пытались выращивать в культуре клеток, демонстрировали все свойства стволовых клеток, образуя клетки различных тканей. Некоторые из необластов (их назвали клоногенными) были в состоянии превращаться во все ткани взрослого червя.
Чтобы подтвердить универсальность клоногенных необластов, учёные пересаживали их червям, облучённым смертельной дозой радиации, когда у планарии не оставалось ни одной клетки, способной к делению. То, что происходило дальше, сами исследователи называют не иначе, как научно-фантастическим фильмом: единственная клетка полностью оздоровляла облучённую планарию! Медленно, но верно потомки пересаженной клетки заменяли повреждённые ткани по всему организму, вплоть до нервных узлов и органов чувств. В конце процесса червь состоял из клеток, генетически идентичных исходной донорской клоногенной клетке. При этом животное чувствовало себя нормально, питалось, росло и размножалось.
Отчёт об этом исследовании опубликован в выпуске журнала Science.
Фундаментальная наука утверждает, что это первый случай, когда взрослое животное несёт плюрипотентные стволовые клетки. До сих пор считалось, что такие всемогущие клетки заканчиваются у организма с его рождением. Ну а для прикладной науки это означает возможный прорыв в регенеративной медицине: если удастся найти человеческие гены, аналогичные тем, что управляют необластами у червей, можно будет создавать похожие всемогущие клетки и на человеческом материале.
Источник: КОМПЬЮЛЕНТА
Чтобы удержаться на вертикальной поверхности, у птицеедов есть дополнительные паутинные органы на лапках ног, которые включаются в моменты особой неустойчивости.
Чилийский розовый птицеед Grammostola rosea (фото Grazzybear)У героя комиксов Человека-паука паутина эффектно вылетала откуда-то из запястий, но зайди его «паучья мутация» чуть дальше, ему пришлось бы метать спасительные нити не совсем политкорректной частью тела, соответствующей «заднему концу брюшка» у настоящих пауков. Паутинные бородавки находятся у пауков только на заднем конце тела. А по стенам и потолку они бегают, как и насекомые, за счёт множества щетинок, покрывающих лапки и будто «присасывающих» животное к поверхности. И никакой паутины.
Но и тут не без исключений. Учёных давно интересовало, как по вертикальным поверхностям ходят огромные пауки-птицееды. Щетинки на их лапках работают на пределе возможностей, чтобы удержать животное на весу. Но пауки не падают, даже если попробовать стряхнуть их с вертикали, на которую они залезли. Несмотря на свой устрашающий вид, птицееды — довольно хрупкие создания, и очевидно, что у них есть какой-то секрет, защищающий их от катастрофических падений.
Ещё в 2006 году учёные предполагали, что птицееды используют паутину, чтобы увеличивать силу взаимодействия между поверхностью и своими ногами. Но тогда было решено, что пауки и в этом случае пускают в ход паутинные органы на конце тела, вымазывая, так сказать, лапки в собственной паутине. И вот сейчас группа исследователей из Университета Ньюкасла (Великобритания) утверждает, что у птицеедов есть паутинные органы и на лапках ног.
Для эксперимента были отобраны розовые чилийские птицееды: пауков помещали в аквариум, дно которого было устлано тонкими стеклянными пластинками — покровными стёклами для микроскопии. Аквариум с пауками переворачивали вверх дном и слегка трясли. Пауки продолжали висеть вниз головой. После чего стеклянные пластинки собирали и изучали под микроскопом. По словам доктора Клер Ринд, исследователям удалось обнаружить до 30 следов от паутинных нитей в тех местах, где «ступала паучья нога». На пластинках, собранных со дна аквариума, который не ставили вверх дном, следов паутины не обнаружилось — пауки выделяли паутину лишь в состоянии неустойчивости.
Исследователи также изучили — уже под электронным микроскопом — шкурки, которые пауки сбрасывали при линьке. Шкурки принадлежали розовым чилийским, красноколенным мексиканским и индийским птицеедам. У всех трёх видов на сброшенных шкурках в районе лапок были видны конические прядильные трубочки, свидетельствовавшие о наличии в этих местах паутинных органов; трубочки выступали над липкими щетинками, которые есть у всех пауков. Паутина, выделяемая такими ножными органами, вероятно, отличается от «обычной», но это как раз в порядке вещей, многие пауки продуцируют паутину разных видов для разных целей.
Подробно о паутинных органах на ногах птицеедов можно почитать в статье, опубликованной в издании Journal of Experimental Biology.
Обнаружение таких структур у трёх видов птицеедов, не являющихся близкими родственниками, говорит о том, что «паутина на ногах» свойственна, скорее всего, всей этой группе пауков. Птицееды — довольно старое и примитивное семейство; возможно, паутинные железы на лапках — привет из далёкого эволюционного прошлого.
В общем, авторы комиксов наградили своего героя чертой вполне правдоподобной, но с точки зрения эволюции примитивной и устаревшей.
Источник: КОМПЬЮЛЕНТА
02-02-2015 Просмотров:8072 Новости Палеонтологии Антоненко Андрей
Новый вид динозавров-зауропод длинной более 15 метров, обнаружили канадские палеонтологи в Китае. Живший в юрском периоде ящер обладал особо длинномерной шеей, на которую приходилось порядка половины всей его длины. Теперь...
22-08-2014 Просмотров:7802 Новости Палеонтологии Антоненко Андрей
Палеонтологи показали, что древнейшие млекопитающие были специализированными хищниками, которые охотились на строго определенные типы насекомых, включая жуков. Об этом говорится в статье британских ученых из Бристольского университета, опубликованной в свежем выпуске журнала Nature. Млекопитающие...
27-08-2014 Просмотров:7776 Новости Микробиологии Антоненко Андрей
Метициллин-резистентный золотистый стафилококк штамма СА (CA-MRSA), поражающий людей в Европе, на Ближнем Востоке и в Северной Африке, произошел от одного предка — бактерии, пришедшей из региона к югу Сахары. CA-MRSA...
14-11-2016 Просмотров:6336 Новости Эволюции Антоненко Андрей
Палеонтологи, биологи, генетики, археологи, антропологи из 25 различных институтов с трех континентов собрались в университете Ливерпуля, чтобы подвести промежуточные итоги проекта, посвященного изучению одомашнивания собак. Об этом рассказал участник проекта...
22-03-2013 Просмотров:11148 Новости Зоологии Антоненко Андрей
Рыбки брызгуны охотятся, сбивая струёй воды зазевавшихся насекомых. И даже если бы у брызгунов были феноменальные обоняние и слух, они бы не помогли: стрельбу приходится вести из воды в воздух,...
Первый относительно полный скелет мелового плезиозавра обнаружили палеонтологи в марокканской фосфоритной шахте. Теперь ученые смогут лучше представить себе животный мир Африки накануне великого мел-палеогенового вымирания. Плезиозавр Zarafasaura oceanis Плезиозавры – довольно…
Отряд: Приматы (лат. Primates) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые (Haplorrhini) Мокроносые (Strepsirhini) Оглавление 1. Общие сведения о Приматах 2. Происхождение и эволюция Примат 3. Классификация…
и стоит искать на Марсе окаменелости, то только в грязи и глине: лучше сохраняются. Увы, анализ 226 марсианских областей, которые считаются дном высохших водоёмов, показал, что лишь треть из них имеет…
Перечни таких рангов, как и их названия, различаются в различных кодексах биологической номенклатуры. В ботанике используются пять инфравидовых рангов (в порядке понижения уровня): подвид (лат. subspecies), разновидность (лат. varietas), подразновидность (лат. subvarietas), форма (лат.…
Необычным открытием закончилось для биолога Митча Прованса (Mitch Provance) из университета Калифорнии в Риверсайде заурядное исследование растений, произрастающих на юге Калифорнии: он нашёл одно из древнейших деревьев, которое, вероятно, клонировало…
Феноменальная способность птиц ориентироваться на местности хорошо известна. Считается, что у них есть целый арсенал «компасов», от банального зрения до магнитного чувства. Однако даже в совокупности эти способы не могут…
Необычная окаменелость из Китая говорит о том, что первые многоклеточные существа появились на Земле примерно 1,56 миллиарда лет назад, почти на миллиард лет раньше, чем считалось ранее, пишут ученые в статье, опубликованной в журнале Nature Communications. Найденные первые…
Ученые нашли в бирманском янтаре необычного жука-стафилиниду, который превратил свои антенны в грабли, приспособленные для ловли мелких прыгающих ногохвосток. Описание находки, подготовленное китайскими специалистами, опубликовано в журнале Scientific Reports. Cascomastigus monstrabilisВ последнее…
Филип Ливермор (Philip Livermore) и его коллеги из Лидского университета (Великобритания) заявляют, что им наконец-то удалось решить загадку о направлении вращения слоёв ядра нашей планеты. Магнитное поле, порождаемое внешними слоями ядра, заставляет его…