Американские ученые выяснили, что некоторые примитивные морские беспозвоночные сохранили органы зрения, представляющие собой ранние стадии эволюции глаза. Таким же образом могли быть устроены глаза у предковых групп, давших начало позвоночным. Это поставило под сомнение справедливость одного из самых известных доводов креационистов против эволюции.
Lingula anatina Давно известно, что скудность данных, объясняющих механизм возникновения глаза позвоночных, является типичным аргументом креационистов — людей, не верящих в то, что современные формы жизни являются результатом длительной эволюции. Они считают, что столь сложная структура не могла развиться в результате накопления случайным образом возникающих мутаций. Еще один довод противников эволюционной теории — отсутствие живых существ, которые несли бы промежуточные варианты глаза.
Однако недавно и этот аргумент против эволюции признан несостоятельным (как, впрочем, и большинство других). Американские ученые выяснили, что органы зрения некоторых примитивных морских беспозвоночных представляют собой ранние стадии эволюции глаза. Авторы этого исследования работали с существом, называющимся Lingula anatina. Это забавное животное, чем-то напоминающее двустворчатого моллюска, на самом деле относится к группе плеченогих (Brachiopoda), которые являются близкими родственниками позвоночных. Как правило, это небольшие животные, которые обитают в морях и океанах. Они ведут прикрепленный образ жизни, их тело закрыто двустворчатой раковиной, из-под которой время от времени высовываются своеобразные "ловчие руки" — изогнутые структуры, покрытые ресничками. С помощью них плеченогие ловят свою добычу.
Считается, что эти существа появились на Земле около 500 миллионов лет назад. Прежде они были весьма многочисленны и являлись основными морскими донными фильтраторами (сейчас таковыми являются двустворчатые моллюски). Но на рубеже палеозойской и мезозойской эры (251,4 миллиона лет назад), во время Великого пермско-триасового вымирания, большая часть этих животных почему-то исчезла (возможно, их вытеснили двустворчатые моллюски, чей фильтрационный аппарат был куда более совершенным), и лишь четыре отряда плеченогих дожили до наших дней.
До сих пор, однако, биология многих видов плеченогих оставалось неизвестной, поскольку эти животные достаточно плохо приживаются в морских аквариумах. В частности, ученые не знали, способны ли они видеть свет. В данном случае исследователей заинтересовали "подозрительные" темноокрашенные структуры, расположенные на передней и задней частях тела лингул.
После серии экспериментов биологи выяснили, что эти темные пятна состоят из двух нейронов, один из которых способен реагировать на свет, а второй содержит молекулы пигмента. Обе нервные клетки соединяются с нервным центром, который, судя по всему, выполняет функции зрительного отдела мозга позвоночных (по крайней мере, похож по строению). Все это указывает на то, что данная структура является весьма примитивным органом зрения.
Чтобы проверить это предположение, ученые решили выяснить, активны ли в странных нейронах гены фоторецепторов — структур, необходимых для реакции на изменение освещенности. Оказалось, что эти гены действительно работают в ядрах данных нейронов. Более того, активность этих генов начинается в клетках эмбриона, когда он достигает возраста 36 часов и представляет собой чашеобразный комок клеток. Интересно, что на этой столь ранней стадии развития у плеченогих еще нет самих нейронов, однако биологи выяснили, что поверхность личинки буквально целиком и полностью покрыта маленькими фоторецепторами. Однако зачем они нужны плеченогим в столь раннем возрасте?
Дело в том, что личинки брахиопод, в отличие от взрослых, весьма активны, поскольку именно им приходится расселяться и захватывать новые местообитания. Эти малыши перемещаются в толще воды при помощи биения жгутиков. Ученые поставили эксперимент: поместили личинок в аквариум, один участок которого был освещен. В результате, всего за 20 минут на нем оказалось вдвое больше животных, чем в темных местах.
Это может означать, что фоторецепторы плеченогих улавливают направление, откуда исходит свет, и после этого существа изменяют ритм и направление движений жгутиков. Тяга же к свету у личинок вполне понятна — там, где более светло, морское дно, скорее всего, не занято (ведь многие сидячие морские животные, например, кораллы, имеют способность поглощать свет), а значит, это хорошее место для того, чтобы осесть на нем и спокойно превратиться во взрослое животное. Кроме того, свет означает наличие фитопланктона (микроскопических водорослей), которыми данные личинки питаются.Моллюски
Итак, как показывают исследования американских биологов, простые глаза свойственны даже весьма примитивным существам. А принцип их работы точно такой же, как и у глаз позвоночных — светочувствительная клетка выполняет функцию сетчатки, а пигментированная — подстилающего слоя, поглощающего избыток света. Все это есть и у позвоночных, и у членистоногих, и у головоногих моллюсков — существ, чьи глаза являются наиболее совершенными.
Кстати, похожие примитивные глазки имеются у личинок и даже некоторых взрослых форм других групп, родственных позвоночным, — иглокожих (Echinodermata), полухордовых (Hemichordata) и щетинкочелюстных (Chaetognatha). По всей видимости, они достались им в наследство от общих предков. После чего у животных из вышеупомянутых групп дальнейшего развития глаз не произошло, поскольку они ведут не очень подвижный образ жизни. А вот активные предки позвоночных, которым было необходимо острое зрение (иначе просто не видишь, куда плывешь), довели этот орган до совершенства.
Так что, как видите, в истории с глазами нет никакого эволюционного разрыва, наоборот, хорошо прослеживаются все основные этапы формирования данного органа. Поэтому считать, что глаз позвоночных является хорошим доказательством невозможности эволюции, по меньшей мере, странно.
Источник: Pravda.ru
10-11-2012 Просмотров:12339 Новости Палеонтологии Антоненко Андрей
Ученые создали компьютерную модель полета гигантских птеродактилей. Оказалось, что они планировали в потоках восходящего воздуха, подобно современным морским птицам, а перед взлетом разбегались со склонов. Кетцалькоа́тль (Quetzalcoatlus)Доклад с такими выводами был...
06-11-2016 Просмотров:7902 Узконосые обезьяны (лат. Catarrhini) Антоненко Андрей
Парвотряд: Узконосые обезьяны (лат. Catarrhini) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Парвотряд: Узконосые...
23-03-2015 Просмотров:7939 Новости Палеонтологии Антоненко Андрей
Ученые оценили аэродинамические качества семян различной формы, принадлежавших древнему хвойному растению. Выяснилось, что лучше всего из них летали семена с одной лопастью – именно к такой конструкции в ходе эволюции...
06-06-2011 Просмотров:10353 Новости Зоологии Антоненко Андрей
Ученые впервые нашли многоклеточное животное так глубоко под землей. Круглый червь с дьявольским именем жил в подземных водах на глубине больше одного километра. Нематоду Halicephalobus mephisto Больше двадцати лет назад...
06-03-2013 Просмотров:11889 Новости Палеонтологии Антоненко Андрей
Палеонтологи нашли крокодилий зуб, застрявший в кости молодого травоядного динозавра. Следовательно, периодически попадая на обед к крокодилам, динозавры не были безраздельными хозяевами Земли. Охота на динозавровОб этом говорится в статье, опубликованной...
Личинки одного из видов североамериканских ночных бабочек обороняются от птиц при помощи свиста. Удивительный механизм защиты обнаружили канадские биологи. При нападении эта гусеница производит звуки в широком диапазоне, начиная от тех,…
Новые исследования указывают на то, что люди жили на побережье Аравийского полуострова, которое сегодня находится под водой, еще 120 000 лет назад. Впрочем, генетических следов они, видимо, не оставили. Джеффри…
Впервые в истории науки в Великобритании палеонтологи обнаружили окаменелые ткани мозга динозавра, принадлежавшие, вероятно, игуанодону или другому утконосому ящеру, жившему на территории Европы в меловом периоде, говорится в статье, опубликованной в журнале Геологического общества Лондона. Окаменевший мозг…
Почти у всех живых организмов, от бактерий до млекопитающих, есть биологические часы, синхронизирующие биохимию, физиологию и поведение с суточной сменой дня и ночи. Но не нужно большого труда, чтобы заметить,…
400 млн лет назад в первобытном океане обитала бесчелюстная рыба Euphanerops. Ко всем прочим странностям этого существа теперь прибавилась пара плавников, расположенная позади его ануса. Ископаемый образец Euphanerops (фото Robert Sansom).«Обычно…
У крошечного рачка геном маленький, но очень необычный. У него много генов, которые отвечают на состояние окружающей среды. Ученые полагают, что из дафнии можно сделать генный сенсор на загрязнения. Дафния (Daphnia…
Останки нового вида динозавров, которые отпугивали хищников с помощью длинных шипов на спине, обнаружили в Аргентине, сообщает интернет-портал Phys.org со ссылкой на исследователей. Сотрудник CONICET Пабло Галлина на фоне реконструкции скелета…
Самое грозное оружие пауков долгое время оставалось скрытым от человеческих глаз. Лишь теперь немецкие и швейцарские учёные установили, что одним из важнейших охотничьих адаптаций, приобретённых восьминогими хищниками в ходе эволюции,…
Зоологам впервые удалось запечатлеть на видео, как работает ловчая катапульта росянки: специальный чувствительный волосок в мгновение ока отправляет неосторожную добычу в самый центр пищеварительного листа растения. Росянка D. glanduligera; указаны а)…