Мир дикой природы на wwlife.ru
Вы находитесь здесь:Мир дикой природы>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Прокариоты


Более миллиарда лет прошло от появления одноклеточных до "изобретения" ядра клетки и рождения ряда других новшеств. Только тогда открылась дорога к первым многоклеточным существам, давшим начало трём царствам животных, растений и грибов. Европейские учёные выдвинули новое объяснение этого преображения, идущее вразрез с существовавшими до сих пор представлениями.

Эукариоты сумели завоевать мир  в первую очередь потому, что  придумали митохондрии –  специализированные  энергетические узлы клетки (на  этой модели они показаны  розовым) (фото Donald Bliss,  Sriram Subramaniam, National  Library of Medicine, NIH) Эукариоты сумели завоевать мир в первую очередь потому, что придумали митохондрии – специализированные энергетические узлы клетки (на этой модели они показаны розовым) (фото Donald Bliss, Sriram Subramaniam, National Library of Medicine, NIH) Прокариоты (доядерные одноклеточные) родились приблизительно 3,8 миллиарда лет назад. Более продвинутые по строению организмы — эукариоты (их клетки содержат ядро) — возникли более двух миллиардов лет назад. И от них порядка одного миллиарда лет назад уже стартовала эволюция многоклеточных существ.

Длина митохондрий колеблется примерно от 1 до 70 микрометров,  а диаметр – от 0,5 до 10 мкм (иллюстрация Odra Noel)Длина митохондрий колеблется примерно от 1 до 70 микрометров, а диаметр – от 0,5 до 10 мкм (иллюстрация Odra Noel)Теперь два таких создания – Ник Лейн (Nick Lane) из университетского колледжа Лондона (UCL) и Уильям Мартин (William Martin) из института ботаники университета Дюссельдорфа – разработали оригинальную теорию. По ней выходит, что ключом к появлению эукариот стало не изобретение ядра (как рассуждали учёные 70 лет), а возникновение митохондрий.

Принято считать, что сначала от прокариот родились более совершенные ядерные клетки, полагавшиеся на старые энергетические механизмы, а уже позже новобранцы обзавелись митохондриями. Последним отводилась важная роль в дальнейшей эволюции эукариот, но не роль краеугольного камня, лежащего в самой её основе.

"Мы показали, что первый вариант не сработает. Для развития сложности клетки ей необходимы митохондрии", — поясняет Мартин. "Наша гипотеза опровергает традиционную точку зрения, будто переход к эукариотическим клеткам требовал только лишь надлежащих мутаций", — вторит ему Лейн.

По теории симбиогенеза, митохондрии (так же как и пластиды) первоначально были отдельными одноклеточными организмами. Их захватили другие клетки, превратив в эндосимбионтов. Постепенно "квартиранты" утратили способность к самостоятельному существованию и превратились в органоиды.

Уильям и Ник говорят, что этот удачный шаг случился лишь один раз за всю историю эволюции. Вместо того чтобы стать паразитом и эксплуатировать клетку-хозяина, убивая её, предок митохондрии и приютившая его клетка пошли на сотрудничество.

Митохондрии внутри клетки (флуоресцируют зелёным). На врезках:  Мартин (слева) и Лейн. Детали нового исследования можно найти в  статье в Nature и пресс-релизе UCL (фотографии Douglas Kline,  molevol.de, nick-lane.net). Митохондрии внутри клетки (флуоресцируют зелёным). На врезках: Мартин (слева) и Лейн. Детали нового исследования можно найти в статье в Nature и пресс-релизе UCL (фотографии Douglas Kline, molevol.de, nick-lane.net). Они развивались совместно, при этом эндосимбионт постепенно оттачивал одно умение — синтез АТФ. Внутренняя клетка уменьшалась в размерах и передавала часть своих второстепенных генов в ядро. Так митохондрии оставили у себя лишь ту часть исходной ДНК, что была им необходима для работы в качестве "живой электростанции".

Число митохондрий (показаны красным) в одной клетке варьируется от  единственного экземпляра (в основном в одноклеточных эукариотах) до  двух тысяч (например, в клетках печени человека)  (иллюстрация Odra Noel)Число митохондрий (показаны красным) в одной клетке варьируется от единственного экземпляра (в основном в одноклеточных эукариотах) до двух тысяч (например, в клетках печени человека) (иллюстрация Odra Noel)Появление митохондрий в плане энергетики можно сравнить с изобретением ракеты после телеги, ведь ядерные клетки в среднем в тысячу раз больше по объёму, чем клетки без ядра.

Последние, казалось бы, тоже могут расти в размерах и сложности устройства (тут есть единичные яркие примеры). Но на этом пути крохотных существ ждёт подвох: по мере геометрического роста быстро падает отношение площади поверхности к объёму.

Между тем простые клетки генерируют энергию при помощи покрывающей их мембраны. Так что в крупной прокариотической клетке может быть полным-полно места для новых генов, но ей просто не хватит энергии для синтеза белков по этим "инструкциям".

Простое увеличение складок внешней мембраны положение не особо спасает (хотя и такие клетки известны). С данным способом наращивания мощности увеличивается и число ошибок в работе энергетической системы. В клетке накапливаются нежелательные молекулы, способные её погубить.

Митохондрии — блестящее изобретение природы. Увеличивая их количество, можно наращивать энергетические возможности клетки без роста её внешней поверхности. При этом каждая митохондрия обладает ещё и встроенными механизмами контроля и ремонта.

И ещё плюс инновации: митохондриальная ДНК невелика и очень экономна. Для её копирования не требуется много ресурсов. А вот бактериям, чтобы нарастить свои энергетические возможности, остаётся разве что создавать множество копий полного своего генома. Но такое развитие быстро приводит к энергетическому тупику.

Сравнение энергетики разных клеток  и их схемы. a) – средний прокариот  (Escherichia), b) – очень крупный  прокариот (Thiomargarita) и  (c) средний эукариот (Euglena).  На диаграммах показаны (сверху вниз):  мощность (ватты) на грамм клетки (d),  мощность (фемтоватты) на один ген (e)  и мощность (пиковатты) на гаплоидный  геном (f) (иллюстрации Nick Lane,  William Martin/Nature).  Сравнение энергетики разных клеток и их схемы. a) – средний прокариот (Escherichia), b) – очень крупный прокариот (Thiomargarita) и (c) средний эукариот (Euglena). На диаграммах показаны (сверху вниз): мощность (ватты) на грамм клетки (d), мощность (фемтоватты) на один ген (e) и мощность (пиковатты) на гаплоидный геном (f) (иллюстрации Nick Lane, William Martin/Nature)Авторы работы посчитали, что средняя эукариотическая клетка теоретически может нести в 200 тысяч раз больше генов, чем средняя бактерия. Эукариот можно представить как библиотеку с большим числом полок — заполняй книгами вволю. Ну а более протяжённый геном — это основа для дальнейшего совершенствования строения клетки и её метаболизма, появления новых регуляторных цепей.

По вычислениям Лейна и Мартина, на каждый ген своего наследственного кода эукариоты располагают на четыре-пять порядков большим запасом энергии, чем бактерии. С этой точки зрения бактерии находятся на дне энергетической пропасти, выбраться из которой они не могут.

Переход клеток к выработке энергии с помощью митохондрий можно сравнить с промышленной революцией. Вместо того чтобы линейно наращивать размер мануфактуры, клетки пошли на качественное изменение: они построили "завод" и поставили в него ряды специализированных "станков".

Потому, несмотря на миллиарды лет существования, прокариоты и поныне остались относительно простыми существами, а эукариоты давным-давно изобрели новые средства передачи сигналов между клетками и шагнули в сторону многоклеточных форм жизни. Нас с вами.

Теория европейских учёных, кстати, может пригодиться и в оценке вероятности существования сложных форм жизни на других мирах.

Дело в том, что примеры поглощения бактериями других клеток — крайне редки. Это означает, что, однажды возникнув, жизнь на многие эоны может задержаться на простой одноклеточной стадии. До тех пор, пока счастливый случай не поможет ей изобрести внутриклеточные энергетические фабрики. "Основные принципы являются универсальными. Даже инопланетянам необходимы митохондрии", — заключает Лейн. 


 

Источник: MEMBRANA


 

 

Опубликовано в Новости Эволюции
Вторник, 29 Январь 2013 23:28

Прокариоты (Procaryota)

Надцарство: ПрокариотыНадцарство: Прокариоты

Общие сведения

Прокариоты (лат. Procaryota, от лат. pro — «перед», «до» и греч. karyon — «ядро»), или безъядерные — одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром.

Рис.1. Строение типичной клетки прокариотРис.1. Строение типичной клетки прокариотДля клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов.

Генетический материал прокариот представлен одной молекулой ДНК, замкнутой в кольцо, имеется только один репликон. В клетках отсутствуют органоиды, имеющие мембранное строение.

Характерные особенности прокариот

  • Отсутствие оформленного ядра
  • Наличие жгутиков, плазмид и газовых вакуолей
  • Структуры, в которых происходит фотосинтезхлоросомы
  • Формы размножения — бесполый способ, имеется псевдосексуальный процесс, в результате которого происходит лишь обмен генетической информацией, без увеличения числа клеток.
  • Размер рибосомы — 70s(по коэф. седиментации различают и рибосомы др. типов, а также субчастицы и биополимеры, входящие в состав рибосом) [1].

Эволюция прокариот

Первые простейшие одноклеточные организмы (прокариоты) появились более 4 млрд лет назад. Недавно в самых древних на Земле осадочных породах времен архея, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. 

По одной из теорий около 4,1 - 3,6 млрд лет назад во времена эоархейского периода из существовавшего в то время разнообразия одноклеточных живых существ (прокариот) (рис. 1) проживавший тогда первый наш общий предок разделился на несколько ветвей, которые в последствии в свою очередь разделились на ныне существующие царства (животных, растений, грибов, протистов, хромистов, бактерий, архей и вирусов). Со временем остальные жители того периода не выдержали с ними конкуренции и исчезли с лица Земли.

По другой теории - как такового общего предка не существовало, а первые обитавшие в то времы простейшие с помощью горизонтального переноса генов между собой, постояно эволюционировали. Предполагается, что на самых ранних этапах эволюции существовало некое общее генное "коммунальное хозяйство". Картина эволюционных связей в мире предковых прокариот представляла собой не столько дерево, сколько своего рода мицелий с переплетенной сетью горизонтальных переносов в самых разнообразных и неожиданных направлениях. По мере усложнения организмов и развития механизмов полового размножения и репродуктивной изоляции горизонтальный перенос становился более редким явлением. В это же время благодаря вирусам-бактериофагам у бактерий появляется и простейшая имуная система. [2]

В отличае от эукариотической клетки, прокариотическая клетка генерирует энергию не с помощью митохондрий (которые у нее отсутствуют), а с помощью покрывающей  их мембраны. В следствие этого,  прокариотической клетки не хватит энергии для синтеза белковПростое увеличение складок внешней мембраны положение не особо спасает (хотя и такие клетки известны). С данным способом наращивания мощности увеличивается и число ошибок в работе энергетической системы. В клетке накапливаются нежелательные молекулы, способные её погубить. Все это привело к тому, что прокариотические клетки так и остались в тысячи раз меньше эукариотических и их геномный материал в разы меньше более совершенных эукариот.

Разделение классификации прокариот:

Подимперия: Клеточные организмы    
Надцарство: Прокариоты
Царство: Бактерии Археи

 


 

Источники: 1. Википедия
2. Клеточные организмы
3. Энергетика клетки объяснила тайну появления сложных форм жизни

 


 

Опубликовано в Прокариоты (Procaryota)
Четверг, 27 Декабрь 2012 22:13

Клеточные организмы

Подимперия: Клеточные организмы


Подимперия: Клеточные организмыЭволюция клеточных организмов

Появление первых клеточных организмов: более 4 млрд лет назад

Первые простейшие одноклеточные организмы (прокариоты) появились более 4 млрд лет назад. Недавно в самых древних на Земле осадочных породах времен архея, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет.

Рис. 1. Колония цианобактерий в фумароле вулкана Дзендзур. Камчатка. (Фото Антоненко А.С., Мир дикой природы)Рис. 1. Колония цианобактерий в фумароле вулкана Дзендзур. Камчатка. (Фото Антоненко А.С., Мир дикой природы)По одной из теорий около 4,1 - 3,6 млрд лет назад во времена эоархейского периода из существовавшего в то время разнообразия одноклеточных живых существ (прокариот) (рис. 1) проживавший тогда первый наш общий предок разделился на несколько ветвей, которые в последствии в свою очередь разделились на ныне существующие царства (животных, растений, грибов, протистов, хромистов, бактерий, архей и вирусов). Со временем остальные жители того периода не выдержали с ними конкуренции и исчезли с лица Земли.

По другой теории - как такового общего предка не существовало, а первые обитавшие в то времы простейшие с помощью горизонтального переноса генов между собой, постояно эволюционировали. Предполагается, что на самых ранних этапах эволюции существовало некое общее генное "коммунальное хозяйство". Картина эволюционных связей в мире предковых прокариот представляла собой не столько дерево, сколько своего рода мицелий с переплетенной сетью горизонтальных переносов в самых разнообразных и неожиданных направлениях. По мере усложнения организмов и развития механизмов полового размножения и репродуктивной изоляции горизонтальный перенос становился более редким явлением (рис. 2). В это же время благодаря вирусам-бактериофагам у бактерий появляется и простейшая имуная система [1].

В это же время произошёл симбиогенез - митохондрии и пластиды в виде существовавших в те времена самостоятельных одноклеточных организмов вошли в состав более крупной клетки став эндосимбионтамиПостепенно они утратили способность к самостоятельному существованию и превратились в органоиды. Развиваясь совместно,  эндосимбионт постепенно оттачивал одно умение — синтез АТФ. Внутренняя клетка уменьшалась в размерах и передавала часть своих второстепенных генов в ядро. Так митохондрии оставили у себя лишь ту часть исходной ДНК, что была им необходима для работы в качестве "живой электростанции" [2].

Рис. 2. Эволюционное дерево отображающее горизонтальный перенос геновРис. 2. Эволюционное дерево отображающее горизонтальный перенос генов

Это привело к появлению в палеопротерозойской эре (более 2 млрд. лет назад) первых эукариотов обладающих ядром и явившихся предками современных животных, растений, протистов и хромистов.

Последующие почти 1,5 млрд лет на нашей планете безукоризненно царствовали одноклеточные организмы, пока в эдикарском периоде около 630 млн. лет назад не появились первые многоклеточные существа. Первоначально в многоклеточные структуры объединялись простейшие хоанофлагеллаты, которые, как полагают, стоят на грани между одноклеточностью и многоклеточностью, образуют зародышеобразные колонии только с помощью бактериального липида, который получают из съеденных бактерий [3]. Следующим щагом было появление в этом же периоде первых настоящих многоклеточных макроогранизмов - эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды. Таких необычных форм в природе не появится уже никогда. В основном это мягкотелые организмы, состоящие из отдельных фракталов. Размеры их тела варьировались от одного сантиметра до одного метра. Выглядели они настолько необычно, что долгое время ученые спорили, к какому царству – растений или животных их можно отнести.

Рис. 3. Силурийское мелководьеРис. 3. Силурийское мелководьеОколо 480-460 млн лет назад в силурийском периоде на суше появились первые растения (по другим данным это произошло в верхнем кембрии 499-488 млн. лет назад), а еще спустя 50 млн лет в девонском периоде вслед за растениями на сушу вышли и первые животные (хотя существуют некоторые данные, показывающие, что первые сухопутные животные жили в силурийском (рис. 3) или даже вендском периодах). После этого начало бурное развитие всевозможных живых существ потомками, которых являемся и мы [4].

 

Разделение классификации:

Империя:

Живых организмов

Подимперии:

Клеточные организмы 

Надцарство:

Эукариоты

Прокариоты


 

Источники: 1. Микробиологи вычислили историю иммунитета
2. Бактерии, возможно, вскормили первых многоклеточных
3. Энергетика клетки объяснила тайну появления сложных форм жизни
4.   Живые организмы. Что такое Жизнь?

 

Опубликовано в Клеточные организмы

Где можно увидеть жизнь такой, какой она была в момент своего рождения? Известный кинорежиссер Джеймс Кэмерон убежден, что это можно сделать, опустившись на дно Марианской впадины. Экосистемы, которые обнаружил там отважный путешественник, напоминают те, что существовали на нашей планете свыше трех миллиардов лет тому назад.

Местоположение Марианской впадиныМестоположение Марианской впадиныДжеймс Кэмерон в рамках своей новой работы сделал нечаянное открытие: на дне Марианской впадины на глубине в 10,9 километра живут себе микробные маты — биопленки, питающиеся веществами, которые они добывают из донных отложений. Аналогичные места обитания и процессы, происходящие в них, полагают исследователи, в глубокой древности породили химическую реакцию, в результате которой на Земле, а, возможно, и в других местах Солнечной системы появились первые живые организмы.

"Мы считаем, что эта химическая реакция может лежать в основе метаболизма, — говорит Кевин Хэнд, астробиолог калифорнийской лаборатории Jet Propulsion (JPL). — Это может быть движущей силой, которая привела к появлению жизни. Возможно, не только здесь, но и в таких мирах, как Европа (ледяная луна Юпитера)".

Миссия Кэмерона Deepsea Challenger совершила ряд погружений, в том числе одно пилотируемое, в Марианскую впадину в период между 31 января и 3 апреля этого года. В пучину морскую Кэмерон погружался лично. Спустившись на дно, режиссер не только любовался окружающим пейзажем: Кэмерон взял пробы грунта и сделал ряд снимков. Поднявшись наверх, Кэмерон рассказал журналистам, что там, внизу, довольно мрачно, а дно похоже на поверхность Луны. Однако, в отличие от безжизненного спутника Земли, в холодных глубинах океана все же таится жизнь.

Марианская впадина в разрезе и ее сравнение с ЭверестомМарианская впадина в разрезе и ее сравнение с ЭверестомНайденные исследователями бактериальные маты представляют собой достаточно распространенную еще с древних времен экосистему прокариот. Хотя некоторые исследователи считают ее аналогом организма многоклеточных — уж больно слаженно действуют бактерии, входящие в "коврик". Как правило, мат объединяет несколько групп "узких" специалистов: одни, например, разлагают только сероводород, другие предпочитают сульфиды, третьи — сульфаты и т. п. Таким образом мат "работает", используя практически все ресурсы в виде химических соединений, что есть вокруг, а члены этой колонии делятся друг с другом органикой, получившейся в результате этого разнообразного хемосинтеза.

Также интересно еще и то, что часто "отходы" одних бактерий, входящих в состав мата, являются полезным ресурсом для других. Это легко продемонстрировать на примере сожительства двух групп бактерий — сероводородных фотосинтетиков и сульфатредукторов. Первые из них могут фотосинтезировать, используя не кислород, как высшие растения, а сероводород. Однако побочным продуктом их деятельности являются оксиды серы, которые, попав в воду, сразу же образуют серную кислоту, а затем сульфаты. Эти сульфаты — желанная пища для сульфатредукторов, которые восстанавливают их с помощью водорода. Но побочным продуктом данного процесса является сероводород, который использует первая группа бактерий.

Таким образом, если две группы этих бактерий будут жить в пределах одного мата, то они образуют вполне себе самодостаточную экосистему. А если еще добавить к ним метанокисляющих бактерий как доноров водорода (они окисляют метан с образованием углекислого газа и молекулярного водорода) и метоногенных бактерий, которые, используя углекислый газ и молекулярный водород, произведенный метанокислителями, получают в качестве побочного продукта тот самый метан, который так нужен первой группе, то "хозяйственная деятельность" станетещеболее сбалансированной. Тогда за водородом далеко ходить не надо, его могут поставлять другие члены колонии. Словом, мат представляет собой практически безотходный комбинат, какой не смогли еще создать люди, ну, а природа породила его свыше трех миллиардов лет тому назад!

В Марианской впадине, как показали результаты экспедиции, живут не только микробные "коврики" — там было замечено и еще несколько ранее неизвестных науке представителей животного мира. Например, гигантские 17-сантиметровые рачки амфиподы (Amphipoda), их называют в России бокоплавы, внешне они весьма похожи на креветок. Исследование этих ракообразны показало, что в их организме содержатся соединения, помогающие тканям эффективнее работать при чрезвычайно высоком давлении.

"Одно из этих соединений — сциллоинозит, идентичный по составу тестируемому сейчас препарату для разрушения амилоидных бляшек, которые связывают с развитием болезни Альцгеймера", — отмечает Дуг Бартлетт, микробиолог из Института океанографии Скриппса при Университете Калифорнии в Сан-Диего. Своей очереди к исследователям ждут еще 20 тысяч микробов, взятых из Марианской впадины.

Еще одного "новичка" нашли на глубине в 8,2 километра в Новобританском желобе у берегов Папуа-Новой Гвинеи. Им оказался представитель морских огурцов, или голотурий (Holothurioidea) — забавных существ из группы иглокожих (Echinodermata). "Они существовали в этих глубинах и в прошлом, но не были запечатлены на пленку. Мы увидели одного из них и думаем, что он представляет собой новый вид", — говорит Бартлетт. А стены желоба украшает огромное количество желудевых червей, глубоководных беспозвоночных, которые засыпают дно впадины своими спиралевидными экскрементами. "Если вы никогда не думали о червях с любовью, то, посмотрев это видео, полюбили бы их", — заверяет Бартлетт.

На видео Кэмерона видны не только глубоководные обитатели, но и старейшее морское дно на планете. Сто восемьдесят миллионов лет назад, когда по Земле еще гуляли динозавры, скалы на дне Марианской впадины были раскаленной лавой. А кадры, снятые режиссером в Новоанглийском желобе, вполне могут оказаться рекордными по глубине места съемки лавовых подушек, полагает морской геолог Пэтти Фрайер из Гавайского университета в Гонолулу.

Измененные породы, дающие пищу микробным матам, являются частью молодых тектонических плит, лежащих поверх древнего дна Тихого океана. Марианская впадина — это зона субдукции, где две тектонические плиты столкнулись и одна из них наползла на другую. Просачивающаяся сквозь нагромождения скал вода меняет состав пород посредством серпентинизации. В ходе этого процесса образуются сера, метан и водород, что и дает бактериям пищу.

В последние годы ученые склоняются к мнению о том, что ранняя жизнь на Земле зародилась порядка четырех миллиардов лет назад в зонах субдукции, подобных Марианской впадине. В этих желобах температура была ниже, и серпентинизированные породы дали необходимый толчок химической реакции, которая и привела к зарождению жизни.

"Эти желоба могли быть тем местом, где появилась жизнь, — говорит Кэмерон. — Эта тайна должна быть разгадана. Надеюсь, мы еще поныряем". Пока что новые погружения не планируются, но, по словам режиссера, погружные и спускаемые глубоководные аппараты находятся в рабочем состоянии и сейчас хранятся на территории его особняка.

 


 

Источник: pravda.ru


 

Опубликовано в Новости Окенологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Как муравьи ухаживают за хищными растениями

23-05-2013 Просмотров:6675 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Как муравьи ухаживают за хищными растениями

Трудно представить себе более странную дружбу, чем та, что существует между муравьями Camponotus schmitzi и насекомоядным растением Nepenthes bicalcarata! Ловчий кувшин N. bicalcarata. (Фото sudha_singh.)Растение это, как и другие виды непентесов,...

Кольца мешают пингвинам и ученым

14-01-2011 Просмотров:7562 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Кольца мешают пингвинам и ученым

Метод наблюдения за антарктическими пингвинами при помощи кольца на ласте снижает выживание и размножение птиц и искажет результаты исследований. Королевские пингвины Кольцевание – общепринятый метод, который применяют орнитологи для изучения поведения...

Кембрийские трилобиты почти завоевали сушу

23-01-2014 Просмотров:4579 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Кембрийские трилобиты почти завоевали сушу

Знаменитые палеозойские членистоногие – трилобиты – обычно считаются типичными обитателями морского дна. Среди них известно несколько плававших форм, но в массе своей эти животные входили в состав бентосных сообществ. Однако...

Птицы запоминают самые «гусеничные» виды деревьев

29-01-2012 Просмотров:6026 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Птицы запоминают самые «гусеничные» виды деревьев

При поиске пищи пернатые ориентируются на те виды деревьев, которые гусеницы считают наиболее питательными. Таким образом, деревья могут сохранить собственную пищевую привлекательность для своих целей, полагаясь на заботу птиц. Черешня! Вкусно!...

Крокодилы были топ-хищниками Америки до пришествия динозавров

19-03-2015 Просмотров:3495 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Крокодилы были топ-хищниками Америки до пришествия динозавров

Палеонтологи обнаружили на территории Северной Каролины останки гигантского древнего прото-крокодила, "каролинского мясника", чьи предки стали главными топ-хищниками Нового Света уже в Триасовом периоде, задолго до пришествия туда динозавров, говорится в статье, опубликованной в журнале Scientific Reports. Carnufex...

top-iconВверх

© 2009-2017 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.