Все крокодилы обладают своеобразными поверхностными рецепторами, которые располагаются у них на голове. Кроме того, они размещаются в роговых щитках, покрывающие всё тело животного. Эти щитки состоят из кератина, кроме того, нередко они укреплены костными пластинами (причём те из них, что находятся на голове, имеют одну особенность: они образуются из отвердевшей и растрескавшейся кожи, то есть их формирование не контролируется генами).
Рецепторы на голове крокодилов одновременно чувствуют механическое давление, температуру и растворённые в воде химические вещества. (Фото авторов работы.)Рецепторы, которые находятся в челюстных щитках, долгое время считались просто осязательными, хотя и весьма чувствительными, подобно боковой линии у рыб. Полагали, что эти органы чувств помогают крокодилам воспринимать малейшие вибрации в воде, исходящие от других животных.
Но, как оказалось, эти рецепторы сильно недооценивали. Исследователи из Женевского университета (Швейцария) проследили за тем, как они развиваются у кайманов и нильских крокодилов, обращая особое внимание на те стадии, когда кожа на голове ещё не начала преобразовываться в щитки.
Выяснилось, что эти «органы осязания» не только чувствуют механическое давление, но и обладают и термо- и хемочувствительными рецепторными каналами. То есть крокодил с помощью одного и того же органа может узнать и направление волны, и её температуру, и её запах. Солёность воды, впрочем, эти рецепторы не отслеживали. (У нильского крокодила для этого есть специальные железы на языке, которые позволяют ему поддерживать водно-солевой баланс в слишком солёной воде.)
Авторы работы подчёркивают, что никакие другие позвоночные ничем подобным не обладают, но зато эти комплексные органы чувств есть у всех крокодилов, включая гавиалов, кайманов и аллигаторов.
Возможно, такое «сгущение» функций произошло из-за появления брони — превращения кожи в панцирь из ороговевших щитков. То есть крокодилам нужно было сохранить высокую чувствительность сформировавшегося панциря, и образование комплексных рецепторов могло быть одним из решений этой задачи.
Результаты исследования будут опубликованы в журнале EvoDevo.
Источник: КОМПЬЮЛЕНТА
Проблема геомагнитной чувствительности у птиц не даёт покоя исследователям — считается, что птицы могут ориентироваться по магнитным полям, но никто не знает, как. Чтобы чувствовать магнитное поле, нужны специальные рецепторы и нервы, которые связывали бы такие рецепторы с мозгом.
У тростниковых камышовок магнитная карта местности, по-видимому, хранится в клюве. (Фото Nigel Blake, 2 million views Thankyou!.) Сначала все думали, что эти рецепторы находятся в клюве, так как он содержит много железа, и что информация от магниточувствительного клюва передаётся по тройничному нерву. Затем, однако, по теории «магнитного клюва» был нанесён мощный удар: в одном из экспериментов у птиц перерезали тройничный нерв, но, несмотря на это, они по-прежнему чувствовали магнитные полюса. Кроме того, железо в клюве вообще объявили следствием того, что тут просто накапливаются эритроциты, и ни к каким магнитным рецепторам это железо не имеет ни малейшего отношения.
Но сторонники «магнитного клюва» не сдались — по их мнению, клюв всё равно играет какую-то роль в магнитном чувстве пернатых. И новые исследования, кажется, подтверждают это. Группа учёных из Университета Ольденбурга (Германия) вместе Зоологическим институтом РАН повторила опыт с рассечением тройничного нерва на тростниковых камышовках. Несколько десятков птиц были отловлены около Калининграда; им сделали операцию, после которой тройничный нерв переставал чувствовать клюв; затем пернатых выпустили, но проследили, куда они полетят.
Каждую весну камышовки летят через Калининградскую область на северо-восток, в Скандинавию, где у них начинается брачный сезон. Птицы преодолевают 1 000 километров, и без ориентировки тут не обойтись — в том числе с помощью пресловутого геомагнитного чувства. Однако на сей раз пойманным пернатым пришлось продолжить путь совсем не из Калининграда — исследователи выпустили их на 1 000 км восточнее. Если птицы и запоминают силовые линии магнитного поля, то теперь они оказались в местности, где геомагнитная карта была им совершенно незнакома.
И тут оказалось, что прооперированные камышовки забыли свою магнитную карту, ибо они всё равно продолжали лететь на северо-восток, сообщают авторы работы в веб-журнале PLoS ONE. Те, у кого нерв остался неповреждённым, двинулись на северо-запад, скорректировав маршрут в связи с «чрезвычайными обстоятельствами».
Отсюда можно сделать вывод, что геомагнитная навигация у птиц всё-таки зависит от клюва, однако авторы вводят более тонкое различие: по их словам, от клюва (и от тройничного нерва, с клювом связанного) зависит картирование местности, запоминание магнитного ландшафта. Что же до собственно компаса, который указывал птицам, где север, где юг, то этот орган находится, скорее всего, в другом месте.
Правда, чтобы клюв работал таким образом, у него всё равно должны быть магнитные рецепторы. И, как поясняет Дмитрий Кишкишев, один из авторов этого исследования, сейчас предстоит эти рецепторы найти. Что представляется сложной задачей, так как тройничный нерв разбегается в клюве на несколько ответвлений, и магниторецепторы могут находиться на конце любого из них.
И тут нельзя не вспомнить другую недавнюю работу, в которой сообщалось о потенциальных магниторецепторах в птичьих ушах. Однако и в случае с ушными клетками, в которых обнаружили магниточувствительные шарики, можно говорить лишь о более-менее вероятных кандидатах на роль таких рецепторов. Так что спор о том, чем именно птицы чувствуют магнитное поле — клювом, ушами или ещё каким органом, — весьма далёк от завершения.
Источник: КОМПЬЮЛЕНТА
Животные с развитым социальным поведением, будь то слоны, обезьяны, собаки или кошки, любят, чтобы их гладили. Если рядом нет человека, который погладил бы их, они гладят друг друга. Да и человек, будучи классическим «социальным животным», тоже любит ласковые, нежные прикосновения: это и удовольствие доставляет, и социальные связи укрепляет. Эти ощущения настолько важны, что для них, как оказалось, существуют даже особые рецепторы и нейроны.
Чтобы чувствовать ласку, в нашей коже и в коже животных существуют специальные нейроны. (Фото Oliver Eltinger.)Рецепторы поглаживания удалось обнаружить исследователям из
Кожа млекопитающих буквально усыпана тактильными рецепторами, которые отвечают на механические стимулы. Эти рецепторы бывают разных видов; более всего известны и изучены болевые. Однако значение груминга — поглаживания и перебирания шерсти у соседа — у зверей столь велико, что существование специализированных рецепторов для такого рода прикосновений кажется само собой разумеющимся. В 2007 году у мышей были обнаружены доселе неизвестные чувствительные клетки, которые находились исключительно на участках кожи, покрытых шерстью. Учёные предположили, что это какие-то особые рецепторы, предназначенные для особой стимуляции, но какой должна быть эта стимуляция, понять не получалось: в тестах, проводимых на изолированных кусочках кожи, эти клетки ни на что не реагировали.
Тогда было решено проверить активность рецепторов прямо у животных. Эмбрионам мышей вводили ген, который заставлял светиться именно эти загадочные нейроны, когда они активировались. Так удалось выяснить, что странные рецепторы активируются только в ответ на мягкое прикосновение — например, на поглаживание кисточкой. На толчки или на касание заострённым пинцетом нервные клетки не реагировали.
Но действительно ли раздражение этих рецепторов вызывает приятные ощущения? Исследователи модифицировали их так, чтобы они возбуждались в ответ на введение определённого вещества. Затем они помещали мышей с модифицированными рецепторами в специальную конструкцию из трёх камер, пары по краям и одной посередине; из средней через проходы можно было попасть в левую или правую. Левая и правая камеры были окрашены в свой цвет и имели свой запах. Сначала животным предоставляли возможность выбрать, где им больше нравится. Затем мышам вводили активирующее нейроны вещество и сажали в ту «комнату», которую они проигнорировали (которая им не нравилась). На другой день животным вместо вещества вводили простой солевой раствор и сажали уже в ту камеру, которая им сразу понравилась. Затем животных помещали в среднюю камеру и предоставляли возможность выбрать, в какую из крайних «комнат» пойти.
Как легко догадаться, мыши выбирали не ту камеру, которая им понравилась с самого начала, а ту, где у них активировали «поглаживательные» нейроны. То есть это действительно доставляло животным удовольствие, иначе они не пошли бы туда, где им было не слишком уютно. А это значит, что обнаруженные рецепторы действительно отвечают за приятные ощущения, которые животные испытывают при поглаживании. И, скорее всего, такие рецепторы есть у всех млекопитающих, вплоть до человека.
Стоит, однако, заметить, что физиологию и молекулярную кухню таких рецепторов исследователи подробно не изучали, то есть как именно приятный сигнал рождается и как анализируется мозгом, ещё предстоит выяснить. То же самое касается роли касательных сигналов в поведении: к примеру, нужно будет узнать, доставляют ли они просто удовольствие или работают как успокоительное и нужны только в момент стресса.
Источник: КОМПЬЮЛЕНТА
Внимание!!!!
Авторские права на все фильмы принадлежат их правообладателям. Все фильмы размещены с согласием их авторов. Разрешен их домашний просмотр и запрещено коммерческое использование. Для их коммерческого использования необходимо связаться с их правообладателями.
19-03-2014 Просмотров:8083 Новости Антропологии Антоненко Андрей
Почему около 40 тыс. лет назад неандертальцы уступили место людям современного анатомического типа? Одна из самых популярных гипотез на этот счёт гласит: наши предки могли похвастаться более разнообразным рационом и...
30-10-2015 Просмотров:7949 Новости Генетики Антоненко Андрей
Ученые открыли самый древний на сегодня сегмент ДНК в геномах насекомых, чей возраст – 700 миллионов лет – позволяет нам считать его частью ДНК общего предка микробов и многоклеточных животных, говорится в статье, опубликованной...
17-06-2016 Просмотров:7421 Новости Зоологии Антоненко Андрей
Биологи открыли бактерий, которые подчистую уничтожают самцов златоглазок в выводке, из-за чего на свет появляются только самки. От полного исчезновения мужского пола этих насекомых может спасти только антибиотик. ЗлатоглазкаК такому выводу...
01-11-2016 Просмотров:7425 Обезьянообразные (лат. Simiiformes) Антоненко Андрей
Инфраотряд: Обезьянообразные (лат. Simiiformes) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Первотряд: Узконосые обезьяны (Catarrhini) Широконосые обезьяны (Platyrrhini) Оглавление 1. Общие сведения об...
13-04-2017 Просмотров:6121 Новости Эволюции Антоненко Андрей
Ученые выяснили, что наиболее продвинутые формы сельского хозяйства возникли у муравьев примерно 35 млн лет назад. В это время климат на Земле стал засушливым и холодным, что заставило муравьев окончательно...
Большинство бактерий имеют клеточную стенку — слоистую структуру, состоящую из сложномодифицированных углеводов и окружающую клетку поверх плазматической мембраны. Собственно говоря, в норме у всех бактерий такая стенка есть, и считается,…
Паразитологи из Пастеровского института (Франция) обнаружили необычный подвид малярийного комара. В странах Африки южнее Сахары от малярии умирает около 710 тыс. человек в год. Самая опасная форма заболевания, вызываемая паразитом под…
Многие птицы и звери ухитряются питаться довольно опасными созданиями — скажем, ядовитыми членистоногими и рептилиями, и примеров тут множество: вспомним хотя бы мангустов, охотящихся на ядовитых змей, или каких-нибудь скорпионовых хомячков. КаракарЭти…
Ученые выяснили, что самыми примитивными многоклеточными животными являются не губки, а гребневики. Об этом свидетельствуют результаты генетического анализа. Эволюционное дерево отображающее горизонтальный перенос геновРезультаты исследования, проведенного американскими генетиками из Брауновского университета,…
Антропологи выяснили, что шимпанзе создают в стволах деревьев странные сооружения из камней. Это поведение не имеет никакого отношения к добыванию пищи и, возможно, является зачатком религиозного культа. Таинственный ритуал шимпанзеОб этом…
В китайской провинции Внутренняя Монголия обнаружены две норы, датируемые пермским периодом. По мнению местных палеонтологов, строителями этих убежищ были достаточно крупные четвероногие, лишь немного уступавшие размерами листрозаврам. Предполагаемые обитатели нор По сообщению…
Исследователи из австралийского Университета Нового Южного Уэльса обнаружили в одном из антарктических озёр новый вид вирофага, названного в честь озера OLV (Organic Lake Virophage). Один из вирусов, павший жертвой вирофага (фото…
Оглавление 1. Общие сведения о животных 1.1. Разделение классификации животных 2. Появление и эволюция животных 2.1. Протерозой. Довендская биота. Животный мир вендского периода (эдикария) 2.2. Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв 2.3. Животный мир ордовикского периода 2.4. Животный мир силурийского периода 2.5. Животный мир…
Считается, что хлоропласты — фотосинтетические органеллы растений и водорослей — возникли в результате симбиоза: когда-то давным-давно нефотосинтезирующие клетки предоставили внутри себя убежище фотосинтезирующим. Постепенно фотосинтетики, поселившиеся внутри, упростились и превратились…