Ученые из ИБХ РАН, МГУ и Университета Юты (США) показали с использованием метода FRET-микроскопии способность нуклеосом обратимо раскручиваться под воздействием FAСT без затрат энергии. Результаты работы опубликованы в журнале Nature Structural & Molecular Biology.
Белковый комплекс FACT способен раскручивать нуклеосому без затрат энергииМолекула ДНК компактно свернута в ядрах клеток, и правильность укладки обеспечивают специальные белки, которые вместе с ДНК формируют структуру под названием хроматин. Единицу компактизации хроматина — нуклеосому — часто сравнивают с катушкой ниток, в которой ДНК (нитка) намотана на бочонок из белков-гистонов (катушку). Плотная упаковка хроматина в ядре нарушается при транскрипции, когда идет активное считывание наследственной информации с ДНК. Облегчить транскрипцию хроматина помогает консервативный белок FACT, который и стал объектом пристального внимания ученых. Им удалось выяснить важные детали его работы при помощи метода spFRET-микроскопии.
В соседние витки нуклеосомной ДНК вводятся флуоресцентные метки, одна из которых служит донором энергии, а другая — акцептором. Донора можно возбудить с помощью лазера определенной длины волны. Если донор находится близко к акцептору, то происходит переброс энергии на акцептор. Чем ближе расположены метки, тем ярче сигнал от акцептора. Таким образом, можно следить за расстоянием между соседними витками ДНК и оценивать, насколько нуклеосома компактно свернута. Метод был разработан российскими учеными.
С его использованием ученые впервые показали способность нуклеосом обратимо раскручиваться под воздействием FACT in vitro (в пробирке) без затрат энергии, что достаточно необычно, так как АТФ-зависимые комплексы ремоделирования для перестройки хроматина тратят много энергии. При образовании комплекса «нуклеосома-FACT» нити ДНК практически полностью распрямляются, но остаются связанными с белками-гистонами. Если убрать FACT из комплекса, то все возвращается на круги своя: нуклеосомная ДНК снова наматывается на основание из гистонов. Таким образом, FACT – это редкий пример АТФ-независимого (без естественных источников энергии) комплекса ремоделирования хроматина.
Изучение этого белкового комплекса важно не только с научной, но и медицинской точки зрения: FACT в большом количестве содержится в опухолевых тканях.
Источник: Научная Россия
Учёные разгадали загадку, откуда взялось несколько видов центромер, за которые клетка растаскивает хромосомы по полюсам деления при размножении.
Во время деления перед клеткой стоит сложная задача: правильным образом распределить хромосомы между дочерними клетками. В зависимости от вида деления (митоз это или мейоз) в дочерние клетки расходятся гомологичные хромосомы или же сестринские хроматиды. Но в любом случае хромосому тащат за центромеру — особую структуру, которая, если нарисовать хромосому в классической Х-образной форме, будет находиться как раз в перемычке икса. Центромера отличается по структуре ДНК и связанных с ней белков от остальной хромосомы. Хотя в целом принцип упаковки ДНК здесь соблюдён: нить нуклеиновой кислоты наматывается на «шайбу» из белков гистонов, формируя элементарную единицу строения хромосомы — нуклеосому.
При делении к центромере крепятся особые молекулярные «канаты», которые начинают тянуть хромосому (или хроматиду) к полюсам деления. Понятно, что от строения центромеры зависит весьма много: неправильная центромера может стать причиной неправильного расхождения хромосом, а это чревато самыми разными болезнями, от синдрома Дауна до рака. Однако, хотя клеточное деление — один из самых интенсивно изучаемых феноменов, до сих пор учёные не имели единого мнения о структуре центромеры. Было известно, что в состав центромерной нуклеосомы входит особая модификация гистона H3. С другой стороны, по разным данным у центромер насчитали шесть разных структур. Вопрос о том, как они соотносятся друг с другом и с клеточным делением, долгое время был большой головной болью для клеточных биологов.
Учёным из Института медицинских исследований Стауэрса (США) удалось раскрыть эту загадку. По их словам, в ходе деления центромера просто меняет структуру, и, рассматривая клетку на разных этапах клеточного цикла, действительно можно насчитать несколько разных центромер. Выяснить это удалось с помощью остроумного методического решения. Исследователи работали с дрожжевыми клетками, у которых в состав центромеры входит гистон Cse4. Чтобы можно было наблюдать за его судьбой, к нему пришили зелёный флюоресцирующий белок. Но исследователи не просто наблюдали за светящимися точками в дрожжевых клетках: они сравнивали интенсивность светимости на разных этапах клеточного цикла.
У дрожжей 16 хромосом, и если в каждой из них есть по центромере, а в каждой центромере сидит по одной копии Cse4, то суммарная светимость клетки должна быть в 16 раз больше, чем светимость одной молекулы Cse4 со светящимся белком. Так и было до того момента, когда клетка начала непосредственно делиться. А когда хромосомы стали расходиться по полюсам, светимость клетки возросла ещё вдвое (то есть она светилась в 32 раза сильнее, чем одна молекула белка).
Иными словами, как пишут исследователи в журнале Cell, центромера обладает переменной структурой, причём эта переменность проявляется, казалось бы, в самый неподходящий момент. Это можно сравнить с тем, как если бы кран поднимал бетонную плиту вместе со строителями, а те вдруг решили поменять крепления между подъёмным тросом и плитой. В случае с центромерой один из белков нуклеосомного комплекса уходит, и на его место приходит ещё одна копия Cse4. После распределения хромосом одна молекула Cse4 покидает центромеру.
Похожие результаты, но с клетками человека были получены группой учёных из Национального онкологического института (США), которые опубликовали свои данные в том же журнале. То есть такие преобразования центромер не есть особенность дрожжей, а свойственны, скорее всего, самым разным организмам и типам клеток. Очевидно, у клетки есть причины для того, чтобы так усложнять себе жизнь. Пока же учёные радуются разрешению важной загадки, связанной с клеточным делением. Возможно, теперь станет ясным механизм некоторых аномалий развития: чтобы хромосомы разошлись неправильно, клетке нужно лишь забыть поменять перед делением один белок центромеры на другой.
Источник: КОМПЬЮЛЕНТА
Внимание!!!!
Авторские права на все фильмы принадлежат их правообладателям. Все фильмы размещены с согласием их авторов. Разрешен их домашний просмотр и запрещено коммерческое использование. Для их коммерческого использования необходимо связаться с их правообладателями.
27-03-2015 Просмотров:7679 Новости Микробиологии Антоненко Андрей
Биологи выяснили, что два очень необычных штамма микробов научились запасать энергию крайне непривычным способом для живых организмов – они выращивают в себе микроскопические кристаллы магнетита и "накачивают" их электронами, таким образом превращая...
26-06-2011 Просмотров:9091 Новости Зоологии Антоненко Андрей
Оказывается, положение особи внутри косяка может меняться в зависимости от её физической подготовки. Как выяснили британцы, оптимальное размещение сильных и слабых рыбок позволяет всему косяку развивать большую скорость. В эксперименте были...
21-05-2010 Просмотров:11903 Новости Ботаники Антоненко Андрей
Неудивительно, что Лу Джост (Lou Jost) из организации EcoMinga Foundation сразу и не заметил новый вид орхидей, ведь цветки растения и вправду крохотные. Новая орхидея неспроста выглядит замёрзшей: каждую ночь она...
01-02-2013 Просмотров:10962 Новости Зоологии Антоненко Андрей
Когда мы говорим о коллективном разуме, то обычно имеем в виду, что коллегиальное решение оказывается более адекватным задаче, нежели принятое одним человеком. Это можно наблюдать не только у нас, но...
11-10-2016 Просмотров:6030 Новости Палеонтологии Антоненко Андрей
Южная Америка в очередной раз подтвердила свою репутацию континента, самого богатого ископаемыми остатками цинодонтов – гипотетических предков млекопитающих. Сразу два новых вида этих интереснейших существ были найдены в фондах одного...
Мы привыкли смотреть на медоносных пчёл как на самых эффективных опылителей. Многие фермеры уверены в том, что бóльшую часть других насекомых, которые тоже занимаются опылением, можно заменить на домашних пчёл,…
Группа исследователей под руководством профессора Сандры Пиццарелло из Университета штата Аризона предположила, что в далеком прошлом именно метеориты стали основным источником доставки на Землю необходимых для зарождения жизни веществ. Неужели…
Ученые доказали, что у некоторых видов динозавров имелись няньки, присматривавшие за потомством. В их роли выступали неполовозрелые особи. Захоронение пситтакозавровОб этом говорится в статье американских ученых из Университета штата Пенсильвания, опубликованной в журнале…
Первые птицы, по-видимому, летали и парили благодаря всем четырём оперённым конечностям, а не двум крыльям, как сегодня. Sapeornis (фото Science / AAAS).Как известно, на задних конечностях птичьих динозавров микрораптора и синорнитозавра…
На формирование литосферных плит, возможно, ушёл целый миллиард лет. Разлом Сан-Андреас в Калифорнии отмечает встречу Тихоокеанской и Североамериканской литосферных плит. (Фото Kevin Schafer / Alamy.)По новой гипотезе, плиты — взаимосвязанные участки…
Палеонтологи из Китайской академии наук описали пару саламандр юрского периода, которые были обнаружены вместе с содержимым своих желудков в пластах Даухугоу (уезд Нинчэн, Внутренняя Монголия). Jeholotriton paradoxus со своими жаброногими (здесь и…
Аппаратам, которые отправятся исследовать огромный подповерхностный океан, возможно, существующий на спутнике Юпитера Европе, придётся бурить очень, очень глубоко. Изображение Европы, составленное на основании снимков аппарата «Галилео» 1995 и 1998 годовНовое исследование…
Ученые из Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова (ИБХ) РАН и Института проблем экологии и эволюции имени А.Н. Северцова обнаружили у миноги, — самого…
АмазонкаГруппа ученых из Университета Бразилиа при поддержке коллег из европейских стран установила, что возраст реки Амазонка составляет 9 млн лет - на 8 млн лет больше, чем считалось ранее. Как…