Когда говорят об эволюции на уровне белковых молекул, обычно имеют в виду изменения в аминокислотной последовательности, которые влекут за собой перестройки в трёхмерной структуре белка. А перемены в последней ведут к изменениям в функционировании белковой молекулы, которая таким образом приспосабливается к новым условиям работы, к новым требованиям клетки и всего организма, выживающего в столь непостоянной окружающей среде.
Однако бывает так, что эволюционные изменения в работе белковой молекулы проходят независимо от изменений в её трёхмерном портрете. Как раз такой случай описывают в Nature Structural and Molecular Biology Питер Райт и его коллеги из Института Скриппса (США). Исследователи занимались дигидрофолат-редуктазой, которая участвует в метаболизме нуклеотидов и имеется почти у всех живых организмов.
Модель молекулы ацетинхолинэстеразы; красными многоугольниками обозначены аминокислотные остатки связывающего центра фермента с ацетилхолином посередине. (Фото Manuel C.; Dr. Peitsch.)Как и любой фермент, дигидрофолат-редуктаза во время работы претерпевает некие структурные изменения, и несколько лет назад учёные уже сообщали о том, как эффективность этого фермента зависит от его динамики и гибкости.
На сей раз исследователи сравнивали динамику фермента и его строение у разных организмов, особое внимание уделяя белку бактерий и белку человека. Оказалось, что, несмотря на огромную эволюционную дистанцию между нами и кишечной палочкой, дигидрофолат-редуктазы у нас и бактерий довольно схожи и по аминокислотной последовательности, и по 3D-структуре. При этом белки кишечной палочки и человека демонстрируют разную конформационную динамику, или, проще говоря, манеру движения.
Фермент захватывает какие-то вещества, что-то с ними делает в активном центре и выпускает обратно в среду некий продукт. Это сопровождается движениями частей молекулы. У бактерий участки полипептидной цепи дигидрофолат-редуктазы совершают для этого относительно широкие движения; у человеческого фермента эти перемещения более, если можно так выразиться, сдержанные, и при этом они точнее. И, главное, рабочие конформационные изменения у нашего фермента осуществляются за счёт иного механизма.
Разница в пластичности, в рабочей динамике фермента произошла за счёт возможностей, заключённых приблизительно в одном и том же пространственном «портрете» и, что особенно важно, из-за разных условий работы, с которыми фермент сталкивается в бактериальной и человеческой клетке. Наш фермент настроен на работу именно в клетке человека и в бактериальных условиях не действует: слишком высокие концентрации конечного продукта, присутствующие в кишечной палочке, просто подавляют его активность.
То, что белок не может переключиться с одной манеры движения на другую, говорит о том, что разная динамика молекул всё же как-то запечатлена в мутациях, в аминокислотной последовательности, и теперь исследователи попытаются эти мутации расшифровать.
Пока же полученные данные говорят о том, что эволюция белковых молекул не обязательно выбирает мишенью трёхмерную структуру и влияет на работу белка только через изменения в 3D-портрете. Видимо, динамическая пластичность сама по себе может подвергаться давлению естественного отбора, когда изменения в аминокислотной последовательности почти не отражаются на пространственной структуре, но сказываются на движениях белковой молекулы.
Источник: КОМПЬЮЛЕНТА
Во время биосинтеза рибосома строит полипептидную цепь в соответствии с кодом, который она читает на матричной РНК. Сырьё для постройки белка приходит к рибосоме в виде аминоацилированных транспортных РНК: к каждой такой тРНК прикреплена аминокислота. тРНК нужна для того, чтобы распознать трёхнуклеотидное слово в мРНК. Не вдаваясь в подробности, скажем, что для каждой аминокислоты есть своя тРНК-переводчик, и аминокислота должна соединиться с той тРНК, которая соответствует нужному нуклеотидному слову в мРНК.
Приблизительная схема молекулы одной из аминоацил-тРНК-синтетаз (иллюстрация C4ptain_Mike).Аминокислот, участвующих в биосинтезе белка, двадцать, и важно, чтобы каждая из них нашла свою тРНК. И тут на сцене появляются особые ферменты, называемые аминоацил-тРНК-синтетазами: они и соединяют аминокислоты и тРНК. Но не просто соединяют: они ещё и проверяют правильность соединения, то есть выполняют редакторскую работу: если аминокислота связалась с чужой тРНК, фермент разрушает связь и образует новую, уже с другой тРНК. Такое редактирование происходит и в рибосоме, которая сверяет тРНК с последовательностью в мРНК, однако точность редактирования на уровне аминоацил-тРНК-синтетаз в 100 раз выше, чем на рибосоме. Следовательно, важность этих ферментов трудно переоценить, и механизм их работы изучали целые армии исследователей.
Однако после того, как механизм работы этих ферментов стал более или менее понятен, возник другой вопрос — об их эволюции. Как развивались аминоацил-тРНК-синтетазы, были ли у них какие-то предки, с чем они работали на заре своей истории? Отчасти на эти вопросы отвечает работа Густаво Каэтано-Анольеса и его сотрудников из Иллинойсского университета в Урбане и Шампейне (США), опубликованная в PLoS ONE. Профессор Каэтано-Анольес известен своим интересом к эволюции процесса биосинтеза (так, он противник гипотезы «мира РНК»), поэтому его очередная статья, как выражаются в таких случаях, «является частью большого проекта».
На этот раз исследователи попытались проследить эволюционную судьбу различных доменов (или структурно-функциональных единиц) молекул аминоацил-тРНК-синтетаз. Логика тут, если опять же не вдаваться в тонкости, довольно простая: если какое-то изменение, какая-то мутация в молекуле встречается у небольшого числа организмов, то эта черта относительно свежая, эволюционно молодая. Если же какая-то особенность в молекуле наблюдается у многих разновидностей белка, то это говорит об эволюционной древности.
Оказалось, что в молекулах аминоацил-тРНК-синтетаз самые древние части — те, что соединяют аминокислоту и тРНК и разрывают связь, если она оказалась неправильной. А вот области белка, которые отвечают за распознавание самой тРНК и дают указание, какую аминокислоту нужно присоединить, оказались эволюционно молодыми. То есть аминоацил-тРНК-синтетазы как будто научились сначала сшивать две молекулы и только потом распознавать, что именно они сшивают.
Из этого можно было бы сделать вывод, что прежде аминоацил-тРНК-синтетазы работали с какими-то другими молекулами. Исследователям удалось установить сходство ферментов с другими белками, которые могут образовывать дипептиды (то есть сшивать вместе две аминокислоты) безо всякой рибосомы. О том, что какой-то безрибосомный белковый синтез, ограниченный вот такими дипептидами, существует в природе, известно было давно, но никто не рассматривал его как предковую форму рибосомного биосинтеза.
Иными словами, биосинтез белка мог в какой-то мере существовать и без сложнейшей рибосомной машинерии, с её кучей белков и специальных рибосомных РНК. Потом уже, по мере развития нуклеиновых кислот и усиления взаимодействия между ними и белками, аминоацил-тРНК-синтетазы приобрели «надстройки», позволяющие им работать с новыми партнёрами.
Впрочем, считаем нужным напомнить сторонникам и противникам «белковых» и «нуклеиновых» теорий возникновения жизни, что и та и другая остаются пока лишь гипотезами, не имеющими окончательного подтверждения.
Источник: КОМПЬЮЛЕНТА
Внимание!!!!
Авторские права на все фильмы принадлежат их правообладателям. Все фильмы размещены с согласием их авторов. Разрешен их домашний просмотр и запрещено коммерческое использование. Для их коммерческого использования необходимо связаться с их правообладателями.
17-11-2016 Просмотров:6344 Новости Палеонтологии Антоненко Андрей
Ученые под руководством Рэйчел Вуд (Rachel Wood) из Эдинбургского университета нашли подтверждения гипотезе о появлении скелетов у животных в ходе эволюции, связывающей это изменение с ростом содержания кислорода в атмосфере...
26-01-2013 Просмотров:10977 Новости Зоологии Антоненко Андрей
Дельфин, который из-за искривленного позвоночника стал изгоем среди своих сородичей, прибился к стае кашалотов. Несмотря на то, что дельфины являются врагами кашалотов, те не стали прогонять больное животное и приняли...
04-01-2016 Просмотров:6487 Новости Зоологии Антоненко Андрей
Язык микрохамелеонов оказался одним из самых быстрых и сильных объектов живого мира – он разгоняется до 100 км в час за сотую долю секунды, переживает перегрузки в 260 ускорений свободного падения и вырабатывает примерно 14 киловатт энергии...
05-02-2012 Просмотров:12656 Новости Зоологии Антоненко Андрей
У трёхиглой колюшки половой диморфизм проявляется в размере мозга: у самцов он намного крупнее, из-за чего колюшки являются едва ли не единственным видом, у которого разница в поведении полов обусловливается...
20-04-2011 Просмотров:13577 Новости Эволюции Антоненко Андрей
На территории Китая палеонтологи нашли древнее млекопитающее, чьи слуховые кости в составе стремечка, молоточка и наковальни еще не утратили прямую связь с нижней челюстью. Эта находка наконец-то окончательно подтвердила справедливость...
Учёные полагают, что им удалось — впервые! — получить образцы живых организмов из подледникового озера в Антарктиде. Таким дно озера Уилланса увидела спущенная в него видеокамера. (Изображение Alberto Behar, JPL /…
Климат Земли не расстилал красный коврик первой многоклеточной жизни. Кембрийскому взрыву предшествовал криогений, во время которого лёд, возможно, дважды сковывал всю планету целиком. Кембрий, напротив, превратил Землю в теплицу: атмосферная концентрация углекислого газа…
Нервная система загадочных ископаемых членистоногих возрастом 520 млн лет оказалась устроена почти в точности так же, как у самых обычных пауков и скорпионов. Похоже, что в этом отношении кембрийский Alalcomenaeus…
Классификация живых организмов По мере изучения природы человеком появилась необходимость классифицировать все живые существа. Впервые такую классификацию провел Аристотель, описав 454 вида животных и разделив весь мир на обладающих кровью…
Древняя птица, жившая около 125 млн лет назад, овулировала, когда встретила свою смерть. Confuciusornis sanctus, реконструкция (изображение Stephanie Abramowicz, NHM Dinosaur Institute)В озёрных отложениях северо-восточного Китая найдены сотни останков вида Confuciusornis…
Одно из редчайших млекопитающих на планете обнаружено на болотистых берегахозера Алаотра (Lake Alaotra). Описание вида составили биологи из треста сохранения дикой природы Даррелла (DWCT), лондонского музея естествознания (NHM)…
Группа исследователей из университета Эдинбурга под руководством Робина Олшира (Robin C. Allshire) пришла к выводу, что не только ДНК отвечает за то, какими будут следующие поколения. Свое исследование они опубликовали в свежем…
Считается, что мел-палеогеновое вымирание, случившееся около 65 млн лет назад, изничтожило динозавров, но в основном пожалело других рептилий. Не тут-то было. Николас Лонгрич из Йельского университета (США) и его коллеги…
Больше подробностей о работе биологических часов нашего организма решили выяснить генетики Еврейского университета в Иерусалиме (Hebrew University of Jerusalem). Обширное исследование показало, что всего одна необычная молекула может играть ведущую…