Недокормленный одноклеточный слизевик Dictyostelium discoideum может образовывать многоклеточные структуры, сходные с эпителием высших организмов.
Простой одноклеточный организм, амебоидный слизевик с латинским названием Dictyostelium discoideum, оказался в состоянии формировать тканеподобные структуры. Для этого несколько особей должны объединиться для образования спор.
Собственно, образование многоклеточного плодового тела у слизевика не совсем свежая новость, но до сего дня никто не вникал в детали процесса. Когда Dictyostelium discoideum не хватает еды, множество клеток объединяются, чтобы образовать споры и отправить их на поиски более пригодного места обитания. При этом теперь уже многоклеточный организм формирует вытянутую «ножку», или «стебелёк», которая и образует споры. Ну а сам «стебелёк» строится из особой группы клеток, якобы несущих ответственность за образование плодового тела. Молекулярная структура последних долгое время оставалась невыясненной.
Дэниэл Дикинсон из Стэнфордского университета (США) нашёл в этих верхушечных клетках плодового тела слизевика два белка, очень похожих на катенины — ключевые компоненты в поляризации клеток у животных. Тут необходимо подчеркнуть, что поляризация клеток (когда у них появляются молекулярно-морфологические «перед» и «зад», или «верх» и «низ») — это главный процесс в развитии организма и образовании всякой ткани и органа.
Так вот, г-н Дикинсон с коллегами обнаружил: у клеток верхушки плодового тела определённые органеллы собраны на одном краю, что напоминает строение эпителиальной ткани у животных. Исследователи выключали два белка — Ddα-катенин и белок Aardvark (второй из белков слизевика, сходных с катенинами). Такой диктиостелиум был не в состоянии формировать спороносное плодовое тело, а клетки «ножки» не обладали признаками поляризации. Как выяснилось, клетки с выключенными белками оказались неспособными выделять целлюлозу и прочие экспортные вещества, на которых и можно было «строить» спороносную ножку.
Подробно результаты исследования описаны в статье, которая вышла в журнале Science.
В целом работа добавляет данных новой гипотезе о возникновении многоклеточности, согласно которой весь генетический инструментарий для этого эволюционного скачка создавался заранее. И для образования многоклеточного тела организмам нужно было лишь применить имеющийся арсенал средств.
Источник: КОМПЬЮЛЕНТА
При ухаживании самец дрозофилы по-особому вибрирует крыльями, что воспринимается самкой как любовная песнь.
Института молекулярных патологий в Вене, самцы фруктовой мушки (Drosophila melanogaster) соблазняют самок любовными серенадами.
Как выяснили австрийские исследователи изИ серенады эти они «поют» крыльями.
Чтобы воссоздать церемонию ухаживания, учёные использовали генетически модифицированных мух. Обычные мухосамцы реагируют на некий запах, который испускает самка. Молекулы, несущие запах, проникают в особые канальцы на голове самца, которые открываются только при 30 ˚C и выше. Генетически модифицированные мухи, использованные в исследовании, впадали в любовную лихорадку при простом повышении температуры, безо всяких окрестных «дам».
Эти канальцы, которые ловят запах самки, соединены с двумя нервными центрами. Первый находится в головном мозгу и принимает одно-единственное решение — начинать ухаживание или нет. К нему ведут пути не только от чувствительных обонятельных канальцев, но и от других органов чувств и центров мозга. Второй располагается в груди, и его функция — регулировать работу мышц крыльев, частоту и ритм движений.
Как только вблизи самца дрозофилы появляется самка, его крылья переключаются в особый режим взмахов и вибраций. Шум, который самец производит крыльями, нам покажется монотонным скрипом и шуршанием. Тем не менее дрозофилы находят эти звуки очаровательными.
Результаты исследования опубликованы в февральском номере журнала Neuron. С точки зрения учёных, детали полового поведения дрозофилы — анализ данных, принятие решения и его практическое выполнение — позволят глубже понять принципы функционирования нервной системы всего класса насекомых.
Источник: КОМПЬЮЛЕНТА
Непрерывные сигналы делают некоторые виды этих млекопитающих более искусными охотниками на насекомых, чем их сородичи, испускающие прерывистый ультразвук.
Университета Западного Онтарио (Канада) провели эксперимент, чтобы выяснить, как и почему это происходит.
О том, что часть летучих мышей лучше распознаёт трепет крылышек своих жертв-насекомых, исследователи догадывались. Брок Фентон и его помощник Луис Лазур изДля этого они использовали «робота-мотылька» — механический флажок, издающий колебания, которые имитируют движение крыльев небольших ночных насекомых. С точки зрения акустики идентичность была практически абсолютной. Этот своеобразный манок использовался в экспериментах на Тайване и в Белизе.
Выяснилось, что большинство летучих мышей испускают пучки ультразвуковых сигналов, а затем слушают эхо, чтобы создать «картинку» окружающего пространства. Однако 20% видов (например, малый подковонос) способны издавать непрерывные сигналы. Благодаря более чувствительным органам слуха они могут выделять из общего потока отражённый сигнал. Если первые приближались к «роботу-мотыльку» только в 1,2% случаев, то вторые — в 18,6%.
Более того, летучие мыши, обладающие более тонким слухом, различают отражение от деревьев и других «стационарных» объектов (для них это звук в одной тональности) и сигнал, который отражён от крыльев насекомых (он «скачет» из тональности в тональность, подобно сирене).
Результаты работы опубликованы в издании Journal of Experimental Biology.
Источник: КОМПЬЮЛЕНТА
Гренландия и Антарктика теряют лёд всё быстрее, трубят спутниковые данные.
Самое продолжительное на сегодня исследование свидетельствует о том, что материковые ледники обогнали горные ледники и ледниковые шапки по вкладу в повышение уровня Мирового океана намного раньше, чем предсказывалось.
Почти 20-летние изыскания (1992–2009) показали, что Гренландия и Антарктика вместе теряют в среднем 475 гт льда в год. Этого достаточно для +1,3 мм воды в копилку морей и океанов. Каждый год размах потерь увеличивается в среднем на 36,3 гт: Гренландия мельчает на 21,9 гт, а Антарктика — на 14,5 гт.
В 2006-м среднегодовые потери горных ледников и ледниковых шапок оценивались в 402 гт, а ускорялось таяние втрое медленнее, чем у материковых ледников.
«То, что в дальнейшем материковые ледники будут доминировать в процессе повышения уровня моря, удивления не вызывает, ведь в них гораздо больше льда, — рассуждает ведущий автор исследования Эрик Риньо из Лаборатории реактивного движения НАСА и Калифорнийского университета в Ирвайне. — Удивительно то, что это уже началось. Если нынешняя тенденция сохранится, уровень моря будет значительно выше, чем предсказала в 2007 году Межправительственная группы экспертов ООН по изменению климата».
Если точнее, то к середине века таяние материковых ледников повысит уровень моря на 15 см. При этом горные ледники дадут ещё 8 см, а 9 см — тепловое расширение океана. Всего — 32 см.
Исследование базируется на сравнении двух независимых методов измерений. Первый определяет разницу между данными интерферометрических радаров с синтетической апертурой европейских, канадских и японских спутников и радиотолщинометрии, а также региональных атмосферных данных климатической модели Утрехтского университета (Нидерланды), которая оценивает количество льда, добавляемого в ледники. Другая технология основана на информации за восемь лет, полученной спутниками Grace, которые отслеживают малейшие трансформации в гравитационном поле Земли, вызванные изменениями распределения массы планеты.
Результаты исследования опубликованы в журнале Geophysical Research Letters.
Источник: КОМПЬЮЛЕНТА
Когда бразильским капуцинам хочется полакомиться термитами, засевшими в своих гнёздах, находчивые и рукастые обезьяны используют «удочки» из веток деревьев.
«Обезьяна встала на задние лапы, взяла в руки палку и превратилась в человека». Это общепринятая точка зрения: человек вознёсся над другими приматами из-за свободных рук, которыми мог манипулировать. Бразильским капуцинам Cebus flavius удалось поколебать эту теорию.
Эти древесные обезьяны едят всё, на что упадёт их глаз: фрукты, пауки, мелкие позвоночные, насекомые... Меню самое разнообразное, и, казалось бы, зачем при таком «столе» сосредотачиваться на труднодоступных термитах, которые надёжно защищены своими гнёздами-термитниками? И тем не менее. Группа учёных из Федерального университета в Пернамбуко стала свидетелями причудливой техники, которую капуцины «разработали» специально для добычи термитов.
В статье, которая готовится к печати в журнале Royal Society Biology Letters, описывается, как обезьяны выуживают термитов из их гнёзд. Капуцин находит висящий на дереве термитник и плотно усаживается перед ним, используя свой гибкий хвост. Затем он в течение некоторого времени похлопывает лапами по стенке термитника, после чего отламывает небольшую веточку и начинает «бурить» ею гнездо — там, где похлопывал. Наконец, добившись успеха, обезьяна достаёт ветку, которая, разумеется, облеплена термитами.
Антонио Соуто, один из исследователей, считает, что похлопывание вносит беспокойство в ряды термитов-солдат — охранников гнезда, и те начинают собираться у того места, откуда идут вибрации. Таким образом, обезьяна, втыкая в термитник свою «удочку», вытаскивает оттуда куда больше насекомых.
Капуцины проявили смекалку и ещё в одном моменте. Если просто долбить термитник веткой, она быстрее сломается, чем вы пробьётесь сквозь твёрдую стенку. Поэтому обезьяны во время своей «рыбалки» вращают палку, используя её как дрель.
Учёные сожалеют, что не застали момент рождения технологии: в наблюдаемой группе обезьян такая охота на термитов уже широко использовалась. Скорее всего, описанное поведение было перенято прочими членами стаи от какого-нибудь «первооткрывателя». Исследователи связывают сообразительность капуцинов с их исключительно разнообразной диетой, которая побуждает обезьян к нестандартным решениям.
Источник: КОМПЬЮЛЕНТА
В глазу личинок дрозофил ничтожно мало фоторецепторов — всего 24 штуки (у человека, напомним, их 125 миллионов). Однако такая зрительная ущербность вовсе не мешает личинкам получать сложную, комплексную «картинку» из окружающей среды. Имея в своём распоряжении самый минимум фоторецепторов, мушиные личинки научились последовательно сканировать пространство, чтобы потом их мозг собрал из разрозненных кусочков целостное изображение.
Эксперименты показали, что дело всё-таки в зрении. Как пишут авторы работы в
Иными словами, имея в распоряжении совсем немного «входных устройств» для сбора визуальной информации, личинки дрозофилы могут тем не менее получить довольно подробную картину происходящего: отличить живое от мёртвого, понять, свой ли вид просит о помощи, и насколько естественны призывные движения. Можно сказать, что мозг личинок видит больше, чем их глаза. Впрочем, такое же поведение можно увидеть и у людей с дефектами зрения: когда они оказываются в ситуации, в которой нужно что-то разглядеть, а света не хватает, они начинают точно так же сканировать пространство, вертя головой.
Выполнять сложную работу по сборке целостной картинки личинкам помогает их большой мозг. Хотя, конечно, его большие размеры весьма относительны: всего у личинок 20 тысяч нейронов, и учёные рассчитывают, что им не составит большого труда узнать, как происходит сборка изображения на нейронном уровне.
Источник: КОМПЬЮЛЕНТА
Азиатский слон Кошик научился имитировать человеческую речь. Он произносит звуки, в которых носители корейского языка узнают пять слов: annyong («привет»), anja («присаживайся»), aniya («нет»), nuo («ляг»), choah («хорошо»). Животное делает это необычным образом — засовывая в рот хобот. Казус подтвердила международная комиссия во главе с сотрудниками
«У человеческой речи, в сущности, два основных аспекта — высота тона и тембр, — поясняет г-жа Стёгер. — Слон Кошик способен имитировать и то и другое: он в точности повторяет не только человеческие форманты, но и высоту голоса дрессировщика». Это поразительно, ведь у слона вместо губ хобот, у него очень длинный голосовой тракт, а гигантская гортань позволяет ему выдавать очень низкие звуки. Короче говоря, ничего человеческого. Однако структурный анализ «речи» Кошика показал, что его вокализация очень близка человеческой и сильно отличается от слоновьей.
Следует отметить, что вокальная мимикрия уже наблюдалась не только у азиатских, но и африканских слонов. Например, сообщалось о том, что африканские слоны способны имитировать звук работающего автомобильного двигателя, а один самец азиатского слона из казахстанского зоопарка вроде бы что-то бормотал по-русски и по-казахски (правда, научного подтверждения этого случая не последовало).
На этот раз сомнений нет: корейцы, которым ставили запись «высказываний» Кошика, в большинстве случаев слышали одни и те же слова. Разумеется, слон не пользуется ими осмысленно.
Непонятно, почему Кошик оказался способен на подобную адаптацию. Возможно, дело в том, что в юности на протяжении пяти лет он оставался единственным слоном южнокорейского зоопарка «Эверленд» и мог общаться исключительно с людьми. Наверное, таким образом животное попыталось укрепить социальную связь с человеком, что сплошь и рядом встречается среди видов, живущих с нами и обладающих соответствующими вокальными возможностями.
О своей работе учёные рассказали в издании
Источник: КОМПЬЮЛЕНТА
Через 2,8 млрд лет умирающее Солнце набухнет и превратится в красного гиганта, который опалит нашу планету уничтожив на ней всю жизнь. Примерно за миллиард лет до этого на Земле останутся только одноклеточные организмы, дрейфующие в изолированных соленых горячих водных источниках.
Это конечно мрачная перспектива, ожидающая нашу планету, но она дает надежду для тех, кто ищет внеземную жизнь. Модель, предсказывающая эти карманы жизни в будущей Земле и намекающая, что обитающая жизнь вокруг других планет может быть более разнообразной, чем считалось ранее, дает новую надежду в поисках жизни в самых неожиданных местах.
Используя то, что мы знаем о Земле и Солнце, учитывая увеличение размеров нашего светила и превращение его в красного гиганта, исследователи из Великобритании рассчитали сроки для различных этапов жизни на нашей планете.
Ранее уже публиковалось исследование, моделирующее этот сценарий жизни на Земле, но Джек О’Мэлли-Джеймс из университета Сент-Эндрюс из Великобритании и его коллеги рассмотрели возможность того, что жизнь обитающая в различных экстремальных местах планеты способна просуществовать намного дольше, чем говорилось в предыдущих исследованиях.
Существует множество звезд находящихся на разных этапах эволюции подобных нашему Солнцу, поэтому ученые смотрели на то, как долго может процветать простая и сложная жизнь вокруг звезд различного размера.
О'Мэлли-Джеймс говорит - "Обитаемость это не столько набор атрибутов планеты, но еще что-то, что имеет срок своего существования".
Исследователи смоделировали повешение температуры на поверхности Земли на различных широтах, а так же учли долгосрочные изменения в параметрах орбиты планеты. Их модель показывает, что по мере старения Солнца происходит нагрев Земли, и как в связи с этим будут исчезать растения, животные, рыбы, беспозвоночные и остальные живые организмы. Испарятся океаны, и остановится тектоника литосферны плит. Последним пристанищем живых микроорганизмов останутся бассейны горячего рассола расположенные на высоких широтах, закрытых пещерах или глубоко под землей. Микробы, обитающие в этих бассейнах, могут править Землей еще в течение миллиардов лет, прежде чем иссякнут и эти источники.
Применяя эту модель обитаемости к различным звездным системам на разных этапах эволюции можно сказать, что жизнь на планете будет одноклеточной в течение первых 3х миллиардов лет и в конце жизни звезды. Это показывает, что наибольшей вероятностью найти жизнь на других планетах будет нахождение одноклеточных организмов.
“Тем не менее, любое доказательство жизни за пределами нашей планеты было бы большим достижением” говорит О'Мэлли-Джеймс. Сейчас он работает над тем, чтобы определить, какие химические признаки микробной жизни будут на Земле в далекой будущем и сможем ли мы обнаружить подобные знаки на других планетах, которые, в настоящее время считаются безжизненными. “Вместо того, чтобы планета была мертвой – она может находится ближе к концу своего обитаемого цикла” говорит он.
Эван Монаган из Открытого университета в Милтон Кейнс, Великобритании, считает, что нам следует думать о жизни на планете, как цикл - от простых до сложных и, возможно, обратно к простым. Это поможет в охоте за внеземной жизнью, говорит он. "Если жизнь существует во многих местах, мы должны определить в каком диапазоне могут существовать многоклеточные”.
Источник: NewScientist
Керченский полуостров в недалеком прошлом славился своими бескрайними степями с ковыльными травами, гейзерными сопками, каменистыми бухтами. В наше время большая часть полуострова освоена людьми, но на севере еще остались первозданные Караларская и Осовинская степи, Булганакские сопки, соленые озера и скалистые бухты. Об особенностях автономок в этой местности в летний период, расскажет и покажет известный украинский автономщик Игорь Молодан.
Пятилетняя работа зоологов из университетов
На диаграмме, представляющей древо жизни птиц в виде спирали, в центр помещён общий предок пернатых, а концентрические круги, светло- и тёмно-серые, соответствуют 20 миллионам лет каждый. Ответвления от спирали — это группы видов, а цвет этих ответвлений показывает, с какой скоростью эволюционировала (диверсифицировалась) каждая группа. Дольше всего развивались и образовывали новые виды «синие» ветки, быстрее всех — красные. Например, довольно много видов и за короткое время сформировалось у дятлов, а вот у их ближайших родственников, птиц-носорогов, видообразование шло медленно.
Древо жизни позволяет по-новому взглянуть на то, как эволюционировали птицы с момента их появления. В частности, как пишут исследователи в журнале
Кроме общетеоретической значимости результатов, авторы работы полагают, что их «древо птиц» поможет экологам: сравнив разнообразие в разных группах, можно понять, какие из них требуют повышенного внимания со стороны природоохранных организаций.
Источник: КОМПЬЮЛЕНТА
20-02-2013 Просмотров:13849 Новости Зоологии Антоненко Андрей
Тюлени спят, как люди, но лишь тогда, когда они на суше. Если же тюленю захочется поспать в воде, у него засыпает только половина мозга, тогда как вторая остаётся бодрствующей. Зоологи...
29-03-2013 Просмотров:12814 Новости Микробиологии Антоненко Андрей
Год назад исследователи из Миннесотского университета (США) сообщили о том, что им удалось воссоздать переход от одноклеточных организмов к многоклеточным. В статье, опубликованной в январе 2012-го, Уильям Рэтклифф и его...
07-03-2019 Просмотров:2692 Новости Палеонтологии Антоненко Андрей
Международная группа палеонтологов обнаружила около горы Сан-Джорджо в швейцарском кантоне Тичино останки трех новых видов рыб. Об этом сообщается на сайте Мюнхенского университета имени Людвига и Максимилиана. Отпечаток рыбы из Швейцарских...
20-05-2015 Просмотров:7666 Новости Ботаники Антоненко Андрей
На дне ледникового фьорда на архипелаге Шпицберген, на глубине 166 м нашли многоклеточные водоросли, которые, по бытовавшим до сих пор научным представлениям, расти там просто не могут. Авторы открытия —...
24-02-2011 Просмотров:11977 Новости Палеонтологии Антоненко Андрей
Окаменелости двух ящеров (взрослого и малыша), датированные 110 миллионами лет, рассказали палеонтологам о необычайно крупных мышцах ног, которыми могли похвастать эти создания. Столь сильные конечности были нужны ящерам для обороны...
Линь - встречается в небольших количествах в Енисее и пойменных водоемах на участке между Минусинском и р. Сым, в Чулыме и Ангаре. Обитает главным образом в глубоких, незаморных озерах. Линь -…
Исследователи из Китая и США под руководством Сюй Син (Xing Xu) из Института палеонтологических и палеоантропологических исследований позвоночных животных (Institute of Vertebrate Paleontology and Paleoanthropology) обнаружили останки неизвестного вида динозавра.…
Лишь после того, как астероид погубил динозавров (за исключением тех, что превратились в птиц), по лесу в поисках насекомых начал сновать маленький пушистый зверёк. По скромной внешности никак нельзя было…
Обнаруженные недавно кости старейшего и самого примитивного примата, известного учёным, говорят о том, что Purgatorius был маленьким гибким животным, которое посвящало основную часть своей жизни поеданию фруктов и лазанью по…
Когда мы смотрим на какой-то объект, то сразу определяем его свойства. Например, видим спортсменку — и понимаем, что перед нами «человек», «женщина» и, допустим, «наконец, просто красавица». Таких категорий может…
Учёные из Копенгагенского университета (Дания) вместе с коллегами из Франции, Норвегии, США, Канады и Китая совершили невозможное — секвенировали геном лошади, которая жила на Земле 560-780 тыс. лет назад. Необходимо уточнить, что…
Генетики восстановили митохондриальную ДНК глиптодонтов, древних двухтонных гигантских броненосцев, которая подтвердила, что эти причудливые представители мегафауны были предками современных броненосцев Южной Америки, говорится в статье, опубликованной в журнале Current Biology. Вымершие гигантские броненосцы Южной…
Американские энтомологи обнаружили, что один из видов тропических муравьев умеет прыгать не только с помощью челюстей, но и с помощью ног. Возможно, такие прыжки помогают муравьям ловить добычу. Муравьи OdontomachusК такому…
Энтомологи открыли в джунглях Южной Америки кузнечиков, которые поют на сверхвысоких частотах и к тому же очень громко. Издавать ультразвуковые сигналы этим насекомым помогают особые резонаторы на крыльях. Открытый укзнечикСтатья с…