Мир дикой природы на wwlife.ru
Вы находитесь здесь:Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Орнитологи из Оксфорда (Великобритания), изучив клювы птиц-печников, усомнились в истинности одного из главных принципов видообразования, гласящего, что новые виды возникают тогда, когда предковая популяция оказывается разделённой. Например, если посередине ареала вдруг возникает река или гора либо появляется ещё какое-нибудь географическое или экологическое препятствие, которое невозможно преодолеть. В этом случае части популяции, оказавшись разделёнными, начинают вариться, так сказать, в собственном генетическом соку, эволюционируют порознь — и в итоге одна из них превращается в новый вид.

Печник в гнезде (фото Flávio Cruvinel Brandão)Печник в гнезде (фото Flávio Cruvinel Brandão)На печниках это правило было бы проверить легко: их существует множество видов, и эволюционную историю последних можно проследить по формам клювов. Так, среди печников есть виды с необычайно длинным и изогнутым клювом. Такая форма очень удобна для того, чтобы вытаскивать насекомых из-под коры, из расщелин и т. д. Виды с похожими клювами, очевидно, находятся в близком родстве. Исследователи проанализировали распространение родственных печников и пришли к выводу, что они делили территорию, чтобы не конкурировать друг с другом. Разбегание видов обусловливалось в первую очередь борьбой за пищевые ресурсы, а не возникновением труднопреодолимых преград.

Сидя на одной территории, два близких вида вынуждены делить одну и ту же кормовую базу. В такой ситуации сестринскому виду нужно искать себе новый ареал. Виды могли бы воссоединиться, но для этого нужно или очень много еды, или чтобы один из них нашёл себе нишу, хотя бы чуть-чуть отличающуюся от ниши собрата. На то, чтобы найти индивидуальную нишу, требуется какой-то срок, и за это время между видами может встать та самая географическая или климатическая преграда. То есть такая преграда скорее окончательно закрепляет разделение видов, но не является его причиной. Хотя возможно, что это лишь один из вариантов развития событий, который имел популярность только у некоторых групп животных — например, у печников.

Результаты исследования опубликованы в журнале Ecology Letters.

 


 

Источник: КОМПЬЮЛЕНТА


 

Когда на суше появилась жизнь? Ответ на этот вопрос (один из фундаментальных в науке) зависит прежде всего от значения слов «жизнь» и «суша».

Существуют чёткие свидетельства жизни в пресной воде (в небольших прудах, если быть точнее), которым миллиард лет или около того. Все остальные свидетельства — косвенные, выведенные из признаков выветривания неморских пород и присутствия окаменевших реликтовых почв. Фактические ископаемые, которые могут снять вопрос о существовании сухопутной жизни в докембрии (более 542 млн лет назад), чрезвычайно редки. Некоторые называют их мифическими.

Это очень трудная тема, при изучении которой невозможно избежать критики и обвинений в желании произвести сенсацию. Одним из тех, кто не боялся этого, была Джейн Грей, палеоботаник. Начиная с 1950-х годов она защищала (зачастую громогласно) гипотезу раннего появления жизни на суше. Поскольку она была женщиной, причём той ещё фурией, и сторонником непопулярной теории, её не жаловали грантами. Но, как писал в некрологе биолог Уильям Шиэр, она интерпретировала ископаемые споры с проницательностью игрока на бирже и финансировала свои исследования за счёт собственного состояния.

Сегодня у Джейн Грей есть достойный последователь. Грегори Реталлак из Орегонского университета (США) тоже не боится звания учёного-еретика. Вот уже много лет он работает над реликтовой почвой из докембрия. Проблема с окаменелой почвой в том, что она признаётся таковой по следам организмов, которые в ней жили, — прежде всего по корням растений. Но как быть с почвой, в которой корней не осталось? В этом случае приходится заниматься ювелирной геологической работой: надо показать, что палеосоль связана с породой, образовавшейся в неморских условиях, а также выполнить геохимический и изотопный анализ. Встречаются иногда и прямые указатели на то, что перед учёным почва, — это карбонатные конкреции, кристаллы песчинок и трещины, вызванные усыханием или присутствием льда.

Улики такого рода и привели г-на Реталлака к заключению о том, что среди эдиакарских пород (635−542 млн лет назад) Южной Австралии ему удалось обнаружить палеосоль. Казалось бы, что тут сложного — всего лишь последний период докембрия, не так давно это было. Но эти породы содержат весьма обильные свидетельства первой макроскопической жизни, которая, как считает большинство, была морской.

Возможно, загадочные Dickinsonia были вовсе не морскими обитателями, а одними из первых «сухопутных крыс». (Фото G. Retallack.)Возможно, загадочные Dickinsonia были вовсе не морскими обитателями, а одними из первых «сухопутных крыс». (Фото G. Retallack.)В эдиакарских породах найдено множество крупных, хорошо выраженных, но загадочных образований, которые обычно интерпретируются как останки живых существ. Первые эдиакарские окаменелости были обнаружены в Южной Австралии, а впоследствии — и на канадском острове Ньюфаундленд, и в российской Арктике, и в центральных графствах Англии.

Эти очень странные окаменелости. Хотя нет сомнений, что данные организмы высокоорганизованны, что они такое — совершенно непонятно. Если они были животными, то совсем или почти совсем не похожи на другие существа — ни на ископаемые, ни на современные. Это привело к предположению о том, что они были гигантскими одноклеточными, грибами, водорослями, лишайниками или даже такой формой жизни, которая полностью отличалась от всего, с чем нам приходилось сталкиваться, и которая с тех пор вымерла.

Пожалуй, единственный момент, по которому достигнут всеобщий консенсус, состоит в том, что, чем бы она ни была, эдиакарская биота обитала на песчаном дне мелких, залитых солнцем морей. Вот где пути г-на Реталлака расходятся практически со всеми, потому что некоторые из его эдиакарских почв связаны с эдиакарскими ископаемыми. Это означает, что по крайней мере часть эдиакарской биоты (не такая уж маленькая и совсем не мифическая) жила на суше, под открытым небом — быть может, на манер лишайников или колоний микроорганизмов, формирующих почвенную корку. Вот кто, по мысли г-на Реталлака, первым заселил сушу, причём не лужицы, а почву сухих и холодных пустынь. Это не просто противоречит общепринятой гипотезе, это... это... это немыслимо! Нет сомнений, что палеонтологи сейчас глубоко вдохнут — и начнётся свалка.

Единственный способ доказать правоту г-на Реталлака — это работать и работать. Можно вспомнить пример той же Джейн Грей. Когда она доказывала существование сухопутной жизни в ордовике (485−443 млн лет назад), на неё махали руками. Сейчас это догма. Между прочим, нет ничего противоестественного в том, что жизнь в той или иной форме (скорее всего, самой скромной) могла выбраться на сушу и в докембрии. К тому же это не обязательно случилось один раз в истории эволюции.

А вообще — давно пора понять: палеонтологическая летопись имеет одну приятную особенность. Когда всё уже понятно, вдруг появляется нечто такое, что уводит науку в неожиданном и захватывающе интересном направлении.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


Четверг, 24 Февраль 2011 00:00

Открыт зауропод с громовыми ногами

Окаменелости двух ящеров (взрослого и малыша), датированные 110 миллионами лет, рассказали палеонтологам о необычайно крупных мышцах ног, которыми могли похвастать эти создания. Столь сильные конечности были нужны ящерам для обороны от плотоядных тварей, а также для путешествий по гористой местности.

Новый растительноядный динозавр, по всей видимости, использовал свои мощные ноги для защиты от  хищников. Нападающему дейнониху или ютараптору гигант мог дать сокрушительного пинка  (иллюстрация Francisco Gascó) Новый растительноядный динозавр, по всей видимости, использовал свои мощные ноги для защиты от хищников. Нападающему дейнониху или ютараптору гигант мог дать сокрушительного пинка (иллюстрация Francisco Gascó) Учёные полагают, что больший из двух динозавров — это самка, а меньший — её детёныш. Мать весила около шести тонн, а в длину насчитывала 14 метров. Малыш же весил 200 килограммов, а его длина составляла 4,5 метра.

Новый зауропод получил имя Brontomerus mcintoshi. Первая часть названия составлена из греческих слов bronto (гром) и meros (бёдра), поскольку мышцы ног у новичка были самые мощные из всех зауроподов. Вторая часть имени дана в честь физика и палеонтолога-любителя Джона Макинтоша (John McIntosh) из Уэслианского университета (Wesleyan University), немало потрудившегося на ниве палеонтологии в Северной Америке.

Атлетичного ящера открыли Майкл Тейлор (Michael Taylor) из университетского колледжа Лондона (University College London) и его коллеги из Западного медицинского университета (Western University of Health Sciences) и музея естествознания Сэма Нобля (Sam Noble Oklahoma Museum of Natural History, в его коллекции и находятся кости данного дино).

Реконструкция скелета бронтомеруса. Белым цветом выделены  найденные кости, серым – предполагаемые, нарисованные по аналогии  с  костями дино-родственника – Camarasaurus grandis  (иллюстрация Michael P. Taylor) Реконструкция скелета бронтомеруса. Белым цветом выделены найденные кости, серым – предполагаемые, нарисованные по аналогии с костями дино-родственника – Camarasaurus grandis (иллюстрация Michael P. Taylor) Останки бронтомеруса были найдены в карьере Hotel Mesa в штате Юта. Их не так уж много, но вполне достаточно, чтобы составить представление о мощных ногах данного зауропода. Главное сокровище в откопанном наборе — это подвздошная кость животного (крупнейшая кость таза).

«Она является необычно большой по сравнению с аналогичной „деталью“ у группы подобных динозавров. Широкое, похожее на лезвие расширение кости обеспечивает очень большую площадь для прикрепления мышц», — объясняет BBC основное отличие бронтомеруса от родственников.

При этом самые мощные мышцы находились в передней части бедра нового ящера, а мышцы на задней стороны конечности были не так сильны. Это указывает, что данное «вооружение» было «разработано» бронтомерусом в первую очередь для нанесения сильного удара задней ногой. Такой пинок мог сослужить хорошую службу ящеру в схватке за самку с другим самцом, а также мог спасти его во время атаки хищника.

Передние конечности новичка, как указывают палеонтологи, тоже были мощнее обычного (если сравнивать с сородичами зауроподами). Об этом говорит форма и габариты лопаток бронтомеруса. Авторы исследования считают, что сильные передние и задние ноги динозавра вместе помогали ему в преодолении пересечённой холмистой местности, словно полный привод у внедорожника.

Авторы открытия осматривают окаменелости нового ящера.  Слева направо: Майкл Тейлор, Мэтью Уэдель (Mathew J. Wedel)  и Ричард Кифелли (Richard L. Cifelli). Справа: реконструкция борьбы  Brontomerus mcintoshi с ютараптором (Utahraptor).  Ниже: тазовая (подвздошная) кость малыша-бронтомеруса,  внизу – позвонок (иллюстрации Linda Coldwell, Jarrod Davis,  Francisco Gascó, UCL, Michael P. Taylor et al) Авторы открытия осматривают окаменелости нового ящера. Слева направо: Майкл Тейлор, Мэтью Уэдель (Mathew J. Wedel) и Ричард Кифелли (Richard L. Cifelli). Справа: реконструкция борьбы Brontomerus mcintoshi с ютараптором (Utahraptor). Ниже: тазовая (подвздошная) кость малыша-бронтомеруса, внизу – позвонок (иллюстрации Linda Coldwell, Jarrod Davis, Francisco Gascó, UCL, Michael P. Taylor et al) Также находка бронтомеруса является одной из нескольких, что ставят знак вопроса над теорией о постепенном вымирании зауроподов в меловом периоде.

«Зауроподы — самые распространённые динозавры из найденных „в юрском периоде“ и редкие — в раннем мелу. Давно сложилось мнение, что зауроподы были успешными в юре, но были вытеснены утконосыми и рогатыми динозаврами в меловом периоде, — говорит Ведель. — В последние 20 лет, однако, мы находим всё больше зауроподов из раннего мела, и картина меняется. Теперь выходит, что зауроподы были столь же разнообразны в мелу, как и в юрском периоде, но гораздо менее многочисленны, и потому — у нас меньше шансов их найти».

Тейлор и его коллеги хотели бы собрать более полный скелет ящера, но, увы, этот участок ранее был разграблен охотниками за окаменелостями (остались следы их деятельности), так что разрозненные куски травоядного атлета разбросаны где-то по частным коллекциям.

(Детали открытия можно найти в статье в журнале Acta Palaeontologica Polonica, а также пресс-релизах — 1, 2, 3.)

 


 

Источник: MEMBRANA


 

Бурая водоросль Aureococcus anophagefferens в последние годы буквально заполонила некоторые части Мирового океана. Ученые выяснили, кто помог ей мутировать и как.

Цветение воды в районе Лонг-Айленда,  вызванное планктоном Aureococcus anophagefferens Цветение воды в районе Лонг-Айленда, вызванное планктоном Aureococcus anophagefferens Цветение океана – серьезная проблема последних десятилетий. При благоприятных условиях, когда, например, в воде оказывается большое количество питательных веществ, в ней начинают быстро размножаться водоросли. Их концентрации могут достигать огромных величин, а вода из-за этого окрашивается в красный, зеленый или бурый цвета. Некоторые виды водорослей, особенно красных или зеленых, токсичны для человека. Тогда в «цветущих» водоемах опасно даже купаться. Бурые приливы – явление для человека неопасное, но вызывает массовый мор рыбы. Это приводит к спаду рыболовства и, следовательно, огромным экономическим убыткам. Естественно, что всех волнует вопрос, почему происходит такое цветение воды, и какие особенности помогают тем или иным видам фитопланктона быстро размножаться.

Жизнь в мутной воде

Группе ученых из США, Канады и Австралии под руководством доктора Кристофера Гоблера (Christopher J. Gobler) из Университета штата Нью-Йорк в Стоуни-Брук удалось выяснить, почему водоросли Aureococcus anophagefferens столь успешно размножаются, вызывая приливы. Ответ на вопрос скрывается в определенном наборе генов.

По словам доктора Гоблера, эти водоросли активно размножаются весной в районе восточного побережья США и у берегов Южной Африки. До 1985 года такого явления в этих акваториях вообще не наблюдалось. Но теперь каждый год весной там происходят «бурые» приливы. Водоросль Aureococcus anophagefferens предпочитает мелководья, особенно мутные воды эстуариев крупных рек — места, где света и неорганических питательных веществ недостаточно, зато в избытке органика – углерод и азот.

«Деятельность человека привела к образованию там новой экологической ниши, где создаются особые условия в результате выброса со стоком рек большого количества органических веществ. Для большинства водорослей такие условия губительны. Но Aureococcus anophagefferens имеет особый набор генов, как показали наши исследования, который позволяет этому виду прекрасно себя чувствовать в такой среде», — говорит Гоблер.

Полезные навыки успешной водоросли

Ученым удалось полностью расшифровать геном Aureococcus anophagefferens еще в 2007 году — в нем оказалось 56 миллионов пар оснований. Доктор Гоблер и его коллеги сравнили эти данные с составом генома других шести видов водорослей, также вызывающих цветение воды. «Существуют такие вещи, которые Aureococcus anophagefferens умеют делать, а другие водоросли — нет. И эти преимущества зашифрованы на генетическом уровне. Прежде всего, это адаптация к условиям плохой освещенности. Без света эти водоросли могут прекрасно себя чувствовать в течение долгого времени. Например, Aureococcus anophagefferens имеет 62 гена, ответственных за улавливание света в процессе фотосинтеза. А другие водоросли, тоже обитающие в заливе, но гораздо менее многочисленные, содержат примерно в два раза меньше этих генов», — говорит Гоблер. Еще одна удивительная закрепленная генетически способность этого вида — выгодная утилизация углерода и азота.

Сейчас ученые пытаются провести Aureococcus anophagefferens анализ РНК. «Очень важно выяснить то, как происходит у них транскрипция генов во время периода цветения. Мы надеемся, что это поможет нам полностью решить загадку, – как на генетическом уровне эти водоросли реагируют на изменение в окружающей среде», — говорит один из соавторов исследования доктор Дирман.

Более подробно об успешной адаптации Aureococcus anophagefferens к окружающей среде и победе над конкурентами можно прочитать в статье доктора Гоблера и коллег «Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics», опубликованной в последнем номере журнала PNAS.


Источник: Infox.ru


Четверг, 24 Февраль 2011 00:00

Членистоногие родились через ноги

«Ходячий кактус» продемонстрировал биологам, что предки насекомых сначала отрастили себе сегментированные ноги и покрыли их броней, а уж затем оделись в нее полностью.

Реконструкция предка членистоногихРеконструкция предка членистоногихЖивотное, найденное и описанное китайскими и немецкими зоологами по окаменевшим отпечаткам в отложениях кембрийского периода на юго-западе Китая, окрестили «ходячим кактусом». Сходство с ветвящимися кактусами ему придают длинные колючие придатки. Diania cactiformis относится к лопастеногим (Lobopodia) – это не слишком изученная группа существ, живших в раннем кембрии. Длина Diania – около 6 см, на голове имеется хоботок. У него длинное и мягкое червеобразное тело, поделенное на сегменты и снабженное десятью парами конечностей. В отличие от незащищенного тела, они покрыты броней с шипами и бугорками.

Передние и задние конечности отходят от тела под разными углами, поэтому Лю Цзянни (Jianni Liu) и его коллеги из Северо-западного университета (Northwest University, Сиань) в КНР и Свободного университета Берлина (Free University of Berlin) считают, что ноги животного выполняли разные функции. Четыре передних ориентированы вдоль тела и больше подходят для подгребания частиц пищи, а задние растопырены в стороны и, скорее всего, служили для движения.

Эволюция «вперед ногами»

Лопастеногих считают предками членистоногих (к которым относятся насекомые, ракообразные и паукообразные). Но из всех до сих пор найденных представителей этого типа именно Diania больше всего похож на членистоногих. Похож своими ногами, которые разделены на сегменты и покрыты внешним скелетом. Биологи не рассматривают его как общего предка всех членистоногих. Скорее, как сестринскую группу, имеющую с насекомыми и ракообразными общего прародителя. Но именно у Diania они впервые отметили подобное преобразование ног.

Это позволяет понять эволюцию членистоногих. Биологам до сих пор было неясно, с чего она началась: то ли сначала мягкое тело оделось в твердый панцирь, то ли ноги обрели броню и членистое строение. Признаки Diania указывают на то, что первыми изменились именно ноги. Эти изменения, как и многие другие, произошли во время кембрийского взрыва — периода быстрой эволюции 500 миллионов лет назад.

Описание «ходячего кактуса» ученые приводят в последнем выпуске Nature.


Источник: Infox.ru


Геофизики из Кембриджского университета представили экспериментальные свидетельства того, что скорость вращения внутреннего ядра Земли переоценивалась.

Обложка того самого номера Nature Обложка того самого номера Nature Твёрдое внутреннее ядро, граница которого находится на глубине около 5 200 км, постоянно растёт за счёт отвердевания вещества внешнего ядра. Скорость роста невелика и оценивается в 1 мм/год. Учёным также известно, что внутреннее ядро можно условно разделить на два полушария с разными свойствами: восточное даёт заметно более высокую скорость распространения сейсмических волн. Это свойство находит своё объяснение в простой модели, согласно которой ядро довольно быстро обновляется по принципу конвейера (кристаллизуется с западной стороны и плавится на востоке).

Поскольку у жидкой части ядра нет жёсткой связи с остальной Землёй, исследователи предполагают, что оно может вращаться быстрее или медленнее, чем мантия и кора. В 1990-х было опубликовано несколько статей на эту тему, и одной из самых цитируемых стала работа американских геофизиков, появившаяся в Nature 18 июля 1996 года. Её авторы утверждали, что внутреннее ядро вращается быстрее, причём «дополнительный» градус вращения накапливается всего за год.

Если учесть совсем небольшую скорость роста внутреннего ядра, согласовать эти результаты с наблюдаемым делением на полушария будет очень сложно. Кембриджские учёные попытались исправить ситуацию, сравнив самый крупный из доступных массивов информации по распространению объёмных сейсмических волн, проходящих сквозь внутреннее ядро, с аналогичными данными для волн, отражающихся от его поверхности. Вычислив разность времён распространения, британцы оценили строение верхнего слоя внутреннего ядра толщиной в 90 км.

Расчёт скоростей распространения волн показал, что условные границы западного и восточного полушарий сдвигаются по мере продвижения вглубь ядра. На большей глубине находится более «древнее» вещество, и сдвиг можно связать с вращением внутреннего ядра; учёные так и сделали, установив, что последнее действительно вращается несколько быстрее остальной части Земли, но прибавка в 0,1˚–1˚ накапливается лишь за миллион лет.

Такое значение прекрасно подходит для моделирования геодинамо. Возможно, на точность предыдущих оценок, которые оказались серьёзно завышенными, повлияли кратковременные колебания скорости вращения внутреннего ядра.

Полная версия отчёта будет опубликована в журнале Nature Geoscience


Источник: КОМПЬЮЛЕНТА


Получены новые данные в пользу того, что солёные грунтовые воды бассейна Витватерсранд в Южной Африке оставались изолированными в течение многих тысяч и, может быть, даже миллионов лет.

Карта бассейна Витватерсранд (иллюстрация Witwatersrand Deep Microbiology Project) Карта бассейна Витватерсранд (иллюстрация Witwatersrand Deep Microbiology Project) Международная группа учёных нашла в воде на глубине трёх километров благородный газ неон.

Необычный набор характеристик неона наряду с высокой солёностью и некоторыми другими уникальными химическими сигнатурами очень отличается от всего, что учёные видели в жидкостях и газах, выходящих из-под земной коры. «Химические сигнатуры также не совпадают с содержимым океанов и водой, залегающей выше в том же бассейне, где, как и в большинстве других регионов коры, подземные воды несут следы смешения с поверхностными и активно колонизируются микроорганизмами, — подчёркивает участник исследования Барбара Шервуд Лоллар из Университета Торонто (Канада). — Мы пришли к выводу, что глубокие воды стали результатом изоляции и активного химического взаимодействия между водой и породой на протяжении невероятно долгого даже по геологическим масштабам времени».

«Мы знаем, что данная конкретная сигнатура изотопов неона создавалась по крайней мере два миллиарда лет назад, — продолжает специалист. — Мы всё ещё можем найти её там и сегодня. Исследование показывает, что некоторая часть неона вышла из минералов, постепенно растворилась и накопилась в расщелинах. Это могло произойти только в водах, которые действительно были отрезаны от поверхности в течение чрезвычайно длительного периода времени».

Тем самым уникальный природный феномен стал ещё более уникальным. Ранее, напомним, здесь была обнаружена наиболее глубоко живущая микробная экосистема планеты. Местные организмы не зависят от солнечного света, существуя за счёт химической энергии породы. «Учитывая то, что они имеют генетическое сходство с организмами, обнаруженными в районе гидротермальных источников, мы считаем их не отдельной ветвью древа жизни, а потомками древних микробов, которые прибыли из других регионов, — подчёркивает г-жа Шервуд Лоллар. — Очевидно, что длительный период изоляции сказался на их эволюции».

Результаты исследования будут опубликованы в журнале Chemical Geology


Источник: КОМПЬЮЛЕНТА


Среда, 12 Декабрь 2012 22:51

Первые живородящие животные

Уругвайская находка эмбриона мезозавра (изображение авторов работы)Предполагается, что одними из первых живородящих животных были мезозавры обитавшие в пермском периоде 280 млн лет назад на территории современных Южной Африки и Америки входивших в то время в суперконтинент Пангею.

Подробнее...

 

Империя: Живые организмыИмперия: Живые организмы

Что такое жизнь? Определение жизни

Вопросы о происхождении жизни, закономерностях исторического развития в различные геологические эпохи всегда интересовали человечество. Понятие жизнь охватывает совокупность всех живых организмов на Земле и условия их существования. Сущность жизни заключается в том, что живые организмы оставляют после себя потомство. Наследственная информация передается из поколения в поколение, организмы саморегулируются и восстанавливаются при воспроизводстве потомства. Жизнь — это особая качественная, наивысшая форма материи, способная, оставляя потомство, к самовоспроизведению.

Понятию жизнь в разных исторических периодах давались различные определения. Первое научно правильное определение дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел". При прекращении процесса обмена веществ между живыми организмами и окружающей средой белки распадаются, и жизнь исчезает. Опираясь на современные достижения биологической науки, русский ученый М. В. Волькенштейн дал новое определение понятию жизнь: "Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот". Это определение не отрицает наличие жизни и на других планетах космического пространства. Жизнь называется открытой системой, на что указывает непрерывный процесс обмена веществ и энергии с окружающей средой. На основании последних научных достижений современной биологической науки дано следующее определение жизни: "Жизнь — это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров — белков и нуклеиновых кислот". Основой всего живого считаются нуклеиновые кислоты и белки, так как они функционируют в клетке, образовывают сложные соединения, которые входят в структуру всех живых организмов.

Живые организмы отличаются от неживой природы присущими им свойствами. К характерным свойствам живых организмов относятся: единство химического состава, обмен веществ и энергии, сходство уровней организации. Для живых организмов характерны также размножение, наследственность, изменчивость, рост и развитие, раздражимость, дискретность, саморегуляция, ритмичность и др. 

 Появление живых существ на Земле и их эволюция

Колония цианобактерий в фумароле вулкана Дзендзур. Камчатка. (Фото Антоненко А.С., Мир дикой природы)Рис. 1. Колония цианобактерий в фумароле вулкана Дзендзур. Камчатка. (Фото Антоненко А.С., Мир дикой природы)Более 4 млрд лет назад на Земле возникла первая жизнь. За это время жизнь прошла большой путь развития, начавшийся спростейших молекулярных  живых растворов появившихся задолго до простейших организмов – каоцерватных капель и заканчивая современными млекопитающими. Параллельно с эволюцией живых существ шла эволюция составляющих их молекул, так первые белки входившие в живые существа обладали более низкой скоростью сворачивания [1].

Первые живые организмы появившиеся на нашей планете не имели ни ДНК, ни даже РНК и обитали в виде живых растворов находившиеся в крошечных полостях, которые часто встречаются в минералах. Роль РНК у первых самовоспровоизводящихся живых обитателей одновременно являвшейся и носителем наследственной информации, и средством её дальнейшего воспроизводства выполняла пептидная нуклеиновая кислота, остовом которой служила цепочка, образованная мономерами N-(2-аминоэтил) глицина (АЭГ) [2, 3]. В дальнейшем произошло её усложнение которое привело к образованию РНК [4]. Через какое-то время эта преджизнь должна была обзавестись собственными оболочками – перейти от доорганизменного уровня к организму. В качестве оболочек этот "живой раствор" использовал каоцерваты состоящие из липтидов [5].

Недавно в самых древних на Земле осадочных породах времен архея, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. 

Эволюционное дерево отображающее горизонтальный перенос геновРис. 2. Эволюционное дерево отображающее горизонтальный перенос геновПо одной из теорий около 4,1 - 3,6 млрд лет назад во времена эоархейского периода из существовавшего в то время разнообразия одноклеточных живых существ (прокариот) (рис. 1) проживавший тогда первый наш общий предок разделился на несколько ветвей, которые в последствии в свою очередь разделились на ныне существующие царства (животных, растений, грибов, протистов, хромистов, бактерий, архей и вирусов). Со временем остальные жители того периода не выдержали с ними конкуренции и исчезли с лица Земли. [6]

По другой теории - как такового общего предка не существовало, а первые обитавшие в то времы простейшие с помощью горизонтального переноса генов между собой, постояно эволюционировали. Предполагается, что на самых ранних этапах эволюции существовало некое общее генное "коммунальное хозяйство". Картина эволюционных связей в мире предковых прокариот представляла собой не столько дерево, сколько своего рода мицелий с переплетенной сетью горизонтальных переносов в самых разнообразных и неожиданных направлениях. По мере усложнения организмов и развития механизмов полового размножения и репродуктивной изоляции горизонтальный перенос становился более редким явлением (рис. 2) [7].

Примерно в этоже время появляются первые вирусы (рис. 3) [8].

БактериофагиРис. 3. БактериофагиСледующим этапом эволюции стало появление в палеопротерозойской эре (более 2 млрд. лет назад) первых эукариотов [9] обладающих ядром и явившихся предками современных животных, растений, протистов и хромистов.

Последующие почти 1,5 млрд лет на нашей планете безукоризненно царствовали одноклеточные организмы, пока в эдикарском периоде около 630 млн. лет назад не появились первые многоклеточные существа.   Таких необычных форм в природе не появится уже никогда. В основном это мягкотелые организмы, состоящие из отдельных фракталов. Размеры их тела варьировались от одного сантиметра до одного метра. Выглядели они настолько необычно, что долгое время ученые спорили, к какому царству – растений или животных их можно отнести [10].

Силурийское мелководье
Рис. 4. Силурийское мелководье
Около 480-460 млн лет назад в силурийском периоде на суше появидись первые растения [11] (по некоторым данным в верхнем кембрии 499-488 млн лет назад [12]), а еще спустя 50 млн лет в девонском периоде вслед за растениями на сушу вышли и первые животные [13] (хотя существуют некоторые данные, показывающие, что первые сухопутные животные жили в силурийском (рис. 4) или даже вендском периодах [14]). После этого начало бурное развитие всевозможных живых существ потомками которых ясляемся и мы.

Разнообразие видов живых существ

Сейчас, по наиболее точным оценкам, насчитывается около 1,6 миллиона живущих видов. Из них 860 000 составляют насекомые, 350 000 — растения, 8600 — птицы и только 3200 — млекопитающие. Большая часть остальных видов, около 300 000, относится к морским беспозвоночным. Общее количество — 1,5 миллиона — включает только те виды, описания которых были опубликованы учеными. Считается, что в несколько раз большее количество видов еще не описано. По прикидкам некоторых ученых, в настоящее время существуют около 8,7 миллиона видов эукариотических организмов (плюм-минус 1,3 млн). В это число не входят вымершие виды, известные только в виде ископаемых остатков. Основываясь на количестве уже описанных ископаемых видов, общее количество вымерших – обитавших когда-либо на протяжении более трех миллиардов лет существования жизни на Земле, оценивают в пределах от 50 миллионов до 4 миллиардов.

По расчётам ученых, в Мировом океане обитает 2,2 млн видов, на суше — 6,5 млн. Животных на планете всего около 7,77 млн видов, грибов — 611 тыс., растений — 300 тыс. При этом растениям повезло больше всего: из них описано 72% видов, тогда как животных — 12%, грибов — только 7%. [15]

Обитание Земля   Океан  
  Каталогизировано Предполагается ± Каталогизировано Предполагается ±
Эукариоты            
Животные 953 434 7 770 000 958 000 171 082 2 150 000 145 000
Грибы 43 271 611 000 297 000 1 097 5 320 11 100
Растения 215 644 298 000 8 200 8 600 16 600 9 130
Протисты 8 118 36 400 6 690 8 118 36 400 6 960
Всего 1 233 500 8 740 000 1 300 000 193 756 2 210 000 182 000
Прокариоты            
Бактерии 10 358 9 680 3 470 652 1 320 436
Археи 502 455 160 1 1 0
Всего 10 860 10 100 3 630 653 1 321 436
Итого 1 244 360 8 750 000 1 300 000 194 409 2 210 000 182 000

 Табл.1. Количество видов обитающих на нашей планете

Несмотря на то, что сейчас живет такое многообразие живых существ, за последнее время деятельность человека привела к существенному их уменьшению. Так, например, за последние сто лет на Земле вымерло в результате деятельности человека около пятой части видов живых существ (только 2005-2010 гг. с лица Земли исчезло около 1000 видов), а площадь лесов сократилась вдвое, уменьшаясь каждую минуту примерно на 20 гектаров. 

Разделение классификации:

Империя:

Живых организмов

Подимперии:

Клеточные организмы

Внеклеточные организмы

 

Антоненко А.С.

 


 

Источники: 1. Эволюция белков шла попути ускорения сворачивания
2.  Похоже, термодинамические расчёты свидетельствуют в пользу гипотезы РНК-мира
3.  Первые белки могли работать без участия РНК
4.   У цианобактерий нашли прото-РНК
5. Появление оболочки у первичных организмов
6.   Последний общий предок
7.   Горизонтальный перенос генов и эволюция
  8.   Можно ли вирусы называть живыми?
9.   Энергетика клетки объяснила тайну появления сложных форм жизни
10.   Древнейшие макроскопические организмы похожи на червей и водоросли
11.   Первые сухопутные растения довели планету до ледникового периода
12. Найдены древнейшие свидетельства существования наземных растений
13.   Царство животных. Девонский период
14.   Жизнь на суше, или О тенденции окаменелостей всё время удивлять
15.   Классификация живых существ

 

 

В обнажении пород Эль Соплао в Кантабрии (север Испании) несколько лет назад был обнаружен странный фрагмент янтаря, на анализ которого у учёных во главе с Рикардо Пересом-де ла Фуэнте из Барселонского университета ушли годы.

Вид ископаемого в янтаре (здесь и ниже иллюстрации Jose Antonio Peñas / Universitat de Barcelona)…Вид ископаемого в янтаре (здесь и ниже иллюстрации Jose Antonio Peñas / Universitat de Barcelona)…Ископаемое возрастом в 110 млн лет и длиной в 4 мм является хищной личинкой насекомого, принадлежащего к семейству златоглазок из отряда сетчатокрылых. Оно покрыто спутанным клубком растительных остатков, собранных им при помощи челюстей с различных растений. Такой набор служит двум целям: он затрудняет поедание хищниками и служит камуфляжем. Находку выделили в отдельный вид и род — Hallucinochrysa diogenesi (галлюцизлатка диогенова). Первое слово в названии обязано своим прохождением галлюцинаторному внешнему виду попавшего в янтарь насекомого, закамуфлированного до полного сюрреализма. Ну а второе связано с известным психическим расстройством человека — синдромом Диогена, который точнее называть симптомом Плюшкина. Как и бессмертный гоголевский персонаж, галлюцизлатка диогенова (Hallucinochrysa  diogenesi) собирала всякий мусор, казалось бы, совсем ей ненужный. Но, в отличие от случая Плюшкина, толк от этого накопительства всё же был.

…И вне его. Отчётливо видны необычные выросты, из-за которых собранный насекомым мусор-кумуфляж не сваливался при передвижении.…И вне его. Отчётливо видны необычные выросты, из-за которых собранный насекомым мусор-кумуфляж не сваливался при передвижении.Основная часть «мусора» — трихомы, «волоски», образующиеся на различных органах растений. Что необычно, все трихомы принадлежали папоротникам, а вовсе не доминировавшим 110 млн лет назад группам высших растений. Современные виды златоглазок собирают иное — остатки высших растений, куски мёртвых клещей и паукообразных. При этом собранное удерживается на спине с помощью туберкул самого насекомого, усеянных волосками. У древней личинки механизм принципиально иной: мусор хранился посредством уникальных по морфологии туберкул, имеющих расширения на концах и образующих что-то вроде корзины.

Как отмечают авторы, галлюцизлатка диогенова (Hallucinochrysa  diogenesi) — надёжное подтверждение тому, что стратегия искусственного камуфляжа при помощи внеорганизменных средств получила широкое хождение среди насекомых очень давно и как минимум к меловому периоду была вполне распространённой.

Более того, исследователи полагают, что такое насекомое было примером мутуализма по схеме «насекомое — папоротник». Хищная личинка питалась поедающими части папоротника насекомыми, в то время как папоротник служил Hallucinochrysa  diogenesi не только домом, но и источником камуфляжных трихом. В ту эпоху территория нынешней Испании часто горела, и на месте пожарищ в качестве рудералов первыми появлялись именно папоротники, гарантируя распространение и личинкам златоглазок.

Отчёт об исследовании в ближайшее время появится в журнале Proceedings of the National Academy of Sciences.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Для неандертальцев, вероятно, было характерно патрилокальное поселение

25-12-2010 Просмотров:11385 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Для неандертальцев, вероятно, было характерно патрилокальное поселение

Учёные из Испании и Дании обнаружили свидетельства того, что для неандертальцев была характерна патрилокальность — норма поселения, при которой молодые живут рядом с отцом «мужа». Работа в пещере Sidrón (фото Carles...

Как выглядит оболочка вируса гриппа

12-02-2015 Просмотров:7347 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Как выглядит оболочка вируса гриппа

Ученые из Оксфордского университета впервые построили целую модель внешней оболочки вириона гриппа А. С помощью метода крупномасштабной молекулярной динамики (coarse-grained molecular dynamics simulation) они выявили разные характеристики мембраны вирусной частицы...

Сахара осушалась медленно

25-12-2010 Просмотров:12172 Новости Метеорологии Антоненко Андрей - avatar Антоненко Андрей

Сахара осушалась медленно

Сахара, крупнейшая пустыня в мире, когда-то была плодородным пастбищем. Общепринято, что всё изменилось со сдвигом вращения Земли, но до сего дня наука не знала, резкой или постепенной была трансформация. Изображения в...

Астероид, погубивший динозавров, навредил и родичам кенгуру

23-12-2014 Просмотров:7714 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Астероид, погубивший динозавров, навредил и родичам кенгуру

Ученые выяснили, что массовое вымирание в конце мелового периода (около 66 млн лет назад), положившее конец эре динозавров, пагубно отразилось также на сумчатых млекопитающих и их родичах. В результате они...

Разум-2012, человеческий нечеловеческий

25-12-2012 Просмотров:11709 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Разум-2012, человеческий нечеловеческий

Уходящий год ознаменовался целым рядом заметных открытий в области, которую можно назвать исследованиями разума. Термин этот вряд ли может претендовать на научность. Однако интуитивно понятно, что речь идёт о мышлении,...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.