Мимикрия сослужила эволюционной биологии хорошую службу, став одним из аргументов в пользу эволюционной теории. Один из двух отцов теории эволюции, Альфред Уоллес, путешествуя по Азии, заметил, что бабочки-парусники Papilio polytes имитируют окраску ядовитой Pachliopta hector. Но хотя имитация окраски хорошо укладывалась в механику развития видов, биологи ещё очень долго раздумывали над тем, как мимикрия реализуется на генетическом уровне.
С одной стороны, высказывались предположения, что маскировка-имитация развивается постепенно, с другой стороны, некоторые полагали, что она появляется внезапным скачком. В итоге биологи-эволюционисты сошлись на том, что существуют некие «супергены», массивы генетической информации, которые контролируют мимикрию и вот так комплексно и наследуются. То есть бабочка не может смешивать гены мимикрии, она получает их сразу все и со всеми изменениями, которые в них происходили, — или же вообще не получает.
Но всё оказалось намного проще! Группа исследователей из Чикагского университета (США) вместе с коллегами из Института фундаментальных исследований Тата (Индия) выяснили, что мимикрия бабочек-парусников зависит только от одного гена. Известно, что самцы Papilio polytes не мимикрируют, их крылья чёрные с белыми пятнами, а вот самки как раз раскрашивают свои крылья под ядовитых Pachliopta hector с помощью цветных полос и пятен. С одной стороны, тут можно усмотреть аргумент в пользу единого и неделимого комплекса «мимикрирующих» генов, однако имитирующая окраска самок может довольно сильно варьироваться, делая их похожими на ядовитый вид в той или иной степени.
Nature авторы пишут, что в итоге они вышли на некую зону в одной из хромосом насекомых, содержащую пять генов, а из этой пятёрки удалось выделить ген под названием doublesex, от которого зависело, какая окраска будет у крыльев.
Чтобы понять причину этой вариабельности, биологи скрещивали между собой разноокрашенных бабочек и проверяли потом геномы их потомства. В первую очередь учёные хотели найти различия между ДНК бабочек с имитирующей окраской и ДНК бабочек без таковой. В журналеЭтот ген известен довольно давно, он управляет работой многих других генов: в частности, от него зависит пол у дрозофил и иных насекомых. Однако «в связях с мимикрией» его ещё не уличали. Полученные данные помогают понять, почему самцы не способны имитировать предостерегающую окраску: во время созревания мРНК doublesex проходит через альтернативный сплайсинг, когда разные куски мРНК перемешиваются друг с другом, и у самцов в результате получается одна мРНК (и один белок), а у самок — совсем другая.
Но альтернативный сплайсинг не объясняет вариабельности в окраске крыльев у самок. Тут всё дело в вариантах самого гена, который у разных линий бабочек может разниться, поэтому разные варианты doublesex могут при развитии крыльев включать разные наборы генов.
Смысл работы не только в том, что учёным удалось разгадать молекулярно-генетическую тайну мимикрии одного вида бабочек (пусть и с таким славным научным прошлым), но и в том, что эти данные наглядно иллюстрируют, как внешняя сложность признака может не совпадать с его внутренней, генетической сложностью.
Нельзя сказать, что все эти альтернативные сплайсинги и варианты генов — сильно простая вещь; в конце концов, мы имеем дело с особым геном, который предназначен для управления другими генами, а такие гены-менеджеры простотой не отличаются. Однако это сложность иного рода, чем та, которую предполагали до сих пор и по поводу которой сломали столько копий, споря о её эволюционных путях. Как видим, такие исследования, использующие ассортимент современных молекулярно-биологических методов, могут довольно успешно разъяснять некоторые сложные места, связанные с эволюцией.
Впрочем, о мимикрии P. polytes споры не утихли. В том же Nature вышла ещё одна статья, авторы которой призывают обратить внимание на некодирующие регуляторные области ДНК, могущие менять уровень активности гена, её время и место. Известно, что именно такие участки ДНК во многом определяют окраску других бабочек — рода Heliconius. И, возможно, такие зоны ДНК могут влиять и на мимикрирующие способности гена doublesex.
Источник: КОМРЬЮЛЕНТА
Самая низкая температура на нашей планете была зарегистрирована в Антарктиде на японской полярной станции «Купол Фудзи» и составила "-93,2 °C", что ниже сублимации сухого льда. Самыми холодными постоянно населенными пунктами на Земле считаются города Верхоянск и Оймякон где температура опускалась до "- 67,8 °C". В 2010 году по наблюдениям со спутника, тепература в нескольких регионах Антарктиды опустилась до - 98°C.
сообщается на сайте NASA, впервые области холода в Антарктиде удалось обследовать более подробно благодаря зонду Landsat 8. В результате ученые смогли выделить участки на Южном полюсе, вымерзающие больше остальных. Сопоставив рекордно низкие температуры, зафиксированные на этих участках, с облачностью, ученые выяснили, что земная поверхность отдает остатки тепла тогда, когда небо в течение нескольких дней остается ясным.
Американское космическое агентство (NASA) проанализировало данные с метеорологических спутников, полученные за последние 32 года, и выявило полюса холода — места на планете, где температура десятки раз за время наблюдений падала до рекордно низких отметок. КакИсследование проводилось при помощи спутниковых датчиков инфракрасного излучения, позволяющих зафиксировать даже минимальное тепло, отдаваемое земной поверхностью в космос. В ходе исследования был выявлен не побитый по сей день температурный рекорд, установленный 10 августа 2010. Тогда температура в районе японской исследовательской станции «Купол Фудзи» опустилась до минус 93,2 °C.
До этого абсолютным температурным минимумом (минус 89,2 °C) считался рекорд, установленный в 1983 году на российской научно-исследовательской станции «Восток». Самыми холодными постоянно населенными пунктами на Земле считаются города Верхоянск и Оймякон, где в 1892 и 1933 годах соответственно фиксировалась температура минус 67,8 °C.
Источник: Арктика и Антарктика
Конечно, у истории нет сослагательного наклонения. Но немецкие и австралийские геологи уверены – располагайся разломы в земной коре чуть-чуть по-другому, и на месте пустыни Сахара сегодня плескался бы Сахарский океан, а очертания Африки и Южной Америки изменились бы до неузнаваемости.
На протяжении сотен миллионов лет южные континенты – Южная Америка, Африка, Антарктида, Австралия и Индия – были объединены в суперконтинент Гондвана. Хотя причины распада Гондваны до сих пор не ясны, еще в мезозое она начала разваливаться на части. Один из первых разломов прошел между Африкой и Южной Америкой, превратившись со временем в южную часть Атлантического океана. Кристиан Гейне из университета Сиднея и Саша Брюн из Германского исследовательского центра наук о Земле рассчитали, что граница между Африкой и Америкой могла пройти совсем в другом месте.
Дело в том, что сегодняшние границы этих материков не совсем соответствуют их рифтовой структуре (рифтами называют впадины в земной коре, образующиеся в результате ее разломов). На юге Гондвана раскололась точно вдоль разлома, а вот на севере этот процесс почему-то остановился, оставив в Африке огромный кусок "зарифтовой" Гондваны. Применив данные тектоники плит и трехмерного моделирования, авторы новой гипотезы попытались выяснить, почему же южная часть огромного гондванского рифта успешно превратилась в южную часть Атлантического океана, а северная так и не разошлась в стороны.
"Разбегание вдоль так называемой южно-атлантической и западноафриканской рифтовых систем должно было привести к делению афро-южноамериканской части Гондваны почти ровно пополам, с образованием Южной Атлантики и Сахарского Атлантического океана, – объясняет доктор Саша Брюн. – Но драматический поворот тектонических плит привел к появлению конкурирующего разлома вдоль современной экваториальной Атлантики, который в итоге и одержал победу над западноафриканским рифтом, приведя к появлению Сахары на своем современном месте".
Если бы события развивались по иному сценарию, то практически вся Западная Африка осталась бы соединена с Южной Америкой, а очертания западной границы африканского континента представляли бы собой прямую линию. Гейне и Брюн предложили довольно простое объяснение неожиданной устойчивости западноафриканского рифта. По их мнению, чем больше угол между рифтовой системой и направлением движения земной коры, тем больше нужно приложить сил для образования разлома по этому рифту. Так как северная часть западноафриканского рифта оказалась практически перпендикулярной направлению растяжения, то его конкурент получил решающее преимущество, а рисунок земных материков обрел современный облик, пишет Science Daily.
Источник: PaleoNews
Самым большом из известных вирусов является питовирус Pithovirus sibericum возростом 30 тыс лет и размороженный из вечной мерзлоты Сибири, его габариты достигают 1,5 мкм, что больше предыдущего рекордсмена - пандоравируса на 0,5 мкм.
Совсем недавно граница между вирусами и клетками была чётко различимой: клетки большие и имеют в геноме всё, что нужно для жизни и размножения, вирусы же, наоборот, маленькие и для размножения вынуждены «арендовать» клеточные молекулярные машины.
наноархеотов, хотя их геном ещё не самый маленький среди клеточных организмов). С другой стороны, в последние годы стали обнаруживаться вирусы один другого больше: вслед за мимивирусом появился мегавирус, а за ним ещё и пандоравирусы. Все они отличаются как общими физическими размерами, так и размерами генома, кои могут быть больше многих клеточных геномов. Следовательно, и закодировано в них куда больше белков, чем у обычных вирусов.
Однако эта граница между вирусным и клеточным в некоторых случаях оказывается слегка размытой. Во-первых, существуют бактерии и археи с очень маленьким геномом: они не в состоянии синтезировать белки, нуклеотиды и аминокислоты и не могут жить вне хозяина (в качестве примера можно привестиЧемпионами среди вирусов-гигантов до сих пор были пандоравирусы, но теперь им, видимо, придётся переместиться на второе место: исследователи из Университета Эк-Марсель (Франция) вместе с российскими коллегами из Института физико-химических и биологических проблем почвоведения РАН нашли в вечной мерзлоте новый вирус, который оказался ещё крупнее. Образцы льда из Сибири разморозили, позволив вирусу заразить амёб, которые тоже были найдены в вечной мерзлоте. Возраст образцов с вирусами — 30 тысяч лет.
Свою находку учёные описывают в журнале PNAS. Вирус назван питовирусом (Pithovirus sibericum); размер его капсида составляет 1,5 мкм, превосходя пандоравирус на 0,5 мкм. Внешне пито- и пандоравирусы похожи. Однако Pithovirus можно назвать крупнейшим по размеру «тела», но не по размеру генома, который у него оказался сравнительно небольшим: всего 600 тыс. пар нуклеотидов (у пандоравирусов, напомним, ДНК состоит из 1,9 и 2,5 млн пар нуклеотидов). Внутри у вируса довольно много свободного места, незанятого нуклеиновой кислотой, и часть его заполнена белками, синтезирующими РНК.
Геном питовируса невелик не только количественно, но и качественно: он кодирует всего 467 белков (сравните с 1 000 и 2 500 у пандоравирусов). Питовирус отказался от тех генов, которые как раз составляют наиболее удивительную черту гигантских вирусов, — от генов белкового синтеза и энергетического метаболизма. То есть в этом смысле он больше похож на обычные вирусы, чем остальные гиганты.
С другой стороны, в ДНК питовируса нашли много повторяющихся некодирующих последовательностей, что для вирусов не очень характерно. И большие, и маленькие, они стараются по возможности сэкономить место и не тратят ДНК на бессмысленные повторы.
Состав генов у Pithovirus оказался довольно своеобразным. Лишь треть из них была похожа на гены, знакомые исследователям, и сходство это делилось между бактериями, эукариотами и другими вирусами. При этом генетического родства с другими гигантскими вирусами обнаружить не удалось.
Но, несмотря на все различия с прочими гигантскими вирусами, питовирус, как и они, паразитировал на амёбах. Что же до возможности заражения других организмов, то вряд ли питовирус на это способен. Впрочем, не будем забывать, что извлекли его из вечной мерзлоты, и если она всё-таки растает от глобального потепления, то кто знает, какие инфекционные сюрпризы проснутся в нашем мире после тысячелетнего сна...
Истчоник: КОМПЬЮЛЕНТА
Пиявка Ozobranchus jantseanus способна больше суток выжить при температуре жидкого азота - (-196 ˚C) и около 3х лет выдержать заморозку до температуры -90 ˚C, кроме того, она способна выдержать несколько циклов заморозки/разморозки с температуры -100 до +20 ˚C и обратно.
Большинство организмов не переносят длительного охлаждения ниже нуля. Так, замерзание воды необратимо повреждает молекулярную кухню клетки и саму клетку, поэтому нужно или греть самого себя, как это делают теплокровные, или просто погибать перед зимой, что свойственно многим растениям и животным.
Впрочем, есть и третий выход — препятствовать замерзанию с помощью каких-нибудь антифризных веществ.
Но насколько глубокое охлаждение позволяют выдерживать живые антифризные системы? Обычно в таких исследованиях ограничиваются более или менее разумными температурами, сравнимыми с тем, которые животным приходится выдерживать в естественной среде обитания. И поэтому эксперименты исследователей из Токийского университета морских наук и технологий (Япония) выглядят очень необычно.
Они охлаждали пиявку Ozobranchus jantseanus не до каких-то -10...-20 ˚C, а до температуры жидкого азота. То есть до -196 ˚C.
Самое удивительное, что после суток в жидком азоте эта пиявка, которая питается кровью пресноводных черепах, выжила! Вот другие её рекорды. O. jantseanus очнулась после 32 месяцев при -90 ˚C. Кроме того, она смогла выдержать несколько циклов замораживания-размораживания, когда температура прыгала от -100 до +20 ˚C и обратно. Это единственный случай, когда организм оказался устойчив к такому огромному диапазону температур.
Результаты экспериментов опубликованы в веб-журнале PLoS ONE.
Тут, конечно, возникают два вопроса: как и зачем? То есть, во-первых, что это за феноменальные механизмы, которые обеспечивают пиявкам такую устойчивость, а во-вторых, зачем вдруг пиявкам понадобилось вырабатывать в себе такие таланты? Ведь в ходе эволюции они вряд ли сталкивались с температурой жидкого азота.
Скорее всего, подобный запас устойчивости есть лишь некий побочный эволюционный бонус, однако ответов на оба вопроса исследователи пока не дают.
Источник: КОМПЬЮЛЕНТА
Разобраться в особенностях питания ранних четвероногих, вышедших из моря на сушу в девонском периоде, решили британские и швейцарские палеонтологи. Они проанализировали окаменелости 23 таксонов первых тетрапод и смогли выяснить, чем, где и как питались пионеры суши.
Основным ключом к пониманию их пищевого поведения стала Acanthostega – одно из самых ранних и примитивных позвоночных, обладавших четырьмя сформировавшимися конечностями. Окаменелости акантостеги были найдены в 1987 году в Гренландии, и палеонтологи считают ее наиболее полезным источником сведений об эволюционном переходе от рыб к четвероногим.
Авторы нового исследования применили передовые статистические методы для изучения анатомических, функциональных и экологических изменений, связанных с появлением четвероногих. Они исследовали механику движения и структуру нижних челюстей Acanthostega, нескольких других ранних тетрапод и рыбообразных тетраподоморфов. Как показали результаты этой работы, челюсти Acanthostega были более приспособлены к питанию под водой. Таким образом, эти тетраподы сохраняли в первую очередь водный образ жизни.
"Происхождение тетрапод от рыб является ярким примером крупного эволюционного перехода. Окаменелости Acanthostega до сих пор продолжают играть непревзойденную роль в нашем понимании этого события. Акантостеги сохранили многие примитивные рыбоподобные черты, одновременно демонстрируя и такие несомненно тетраподные особенности, как пальцы на конечностях. Широкая морда, по-видимому, соответствует подводному способу питания (всасыванию добычи), но сложные черепные сочленения уже аналогичны наземным позвоночным и, предположительно, позволяли совершать укусы – вполне сухопутный способ захвата добычи. Этот парадокс и должно было разрешить наше исследование", – рассказал палеонтолог университета Линкольна доктор Марчелло Рута.
По его словам, нижняя челюсть Acanthostega анатомически и функционально похожа на челюсти некоторых ранних рыб. В то же время вздернутое рыло и загнутые назад "клыки", как кажется, являются приспособлениями для резкого, "щелкающего" закрытия рта. "Все эти наблюдения показывают, что данный тип челюстей был адаптацией к мгновенному закрытию и эффективному захвату быстрой добычи, поддерживая взгляды на преимущественно, если не исключительно, водный способ питания", – приводит слова Рутапресс-релиз университета Линкольна.
(Узнать больше подробностей о том, как питались ранние наземные позвоночные, можно в статье "Первым тетраподам было очень трудно кушать")
Понадобилась почти сотня миллионов лет, с девонского по каменноугольный периоды, чтобы тетраподы медленно усовершенствовали строение своего челюстного аппарата и способы питания, освоили жевательные движения для употребления в пищу растительности и развили силу челюстных мышц, достаточную для того, чтобы отрывать куски плоти от животной добычи.
Источник: PaleoNews
Птицы появились на много миллионов лет раньше, чем это считалось ранее, заявили палеонтологи университета Бристоля. Они рассчитали время появления первых птиц на основании темпов эволюции ключевых адаптаций этой группы и получили неожиданные результаты.
Аспирант геологического факультета Марк Путтик и его соавторы решили, что ключевыми характеристиками, непосредственно предшествовавшими возникновению полета, превратившего динозавров в птиц, были уменьшение размеров тела и увеличение передних конечностей, благодаря оперению превращающихся в крылья. Исследовав историю возникновения этих адаптаций, ученые пришли к выводу, что самые первые существа, имеющие право претендовать на звание птиц, появились примерно на 20 млн лет раньше знаменитого археоптерикса и принадлежали к кладе Paraves, в которую наряду с настоящими птицами входило и большое количество разнообразных ящеров.
"Мы были удивлены, обнаружив, что ключевые изменения в размерах тела произошли практически в самом начале формирования Paraves, – отметил Путтик. – Это происходило по крайней мере на 20 млн лет раньше, чем появилась первоптица Archaeopteryx, и это показывает, что способность к полету у птиц развивалась на протяжении нескольких эволюционных этапов".
Маленькими и легкими, как птичка, были сразу несколько десятков динозавров, продолжают палеонтологи. Однако имеющиеся у большинства из них крылья не допускали махового полета и позволяли лишь планировать подобно летягам или парашютистам. "Из всех этих многочисленных планеров только настоящие птицы обладали способностью хлопать крыльями, – рассказал соавтор исследования, профессор палеонтологии Бристольского университета Майк Бентон. – Но Archaeopteryx вовсе не был родоначальником этой примечательной группы".
Чтобы установить все это, ученые прибегли к использованию новых статистических методов, которые определяют скорость изменения разных характеристик в общем эволюционном древе, находя на нем участки быстрой, "взрывной" эволюции. "До сих пор мы могли только догадываться, где происходили основные эволюционные переходы, – пояснил доктор Гэвин Томас из университета Шеффилда, также принимавший участие в работе. – Но новые методы точно фиксируют изменения. Небольшой размер птиц и их длинные крылья появились намного раньше, чем сами птицы".
"Возникновение птиц обычно рассматривается в качестве примера быстрого эволюционного перехода, но наши данные показывают, что их основные особенности сформировались гораздо раньше появления самих птиц", – приводит PhysOrg слова Путтика.
Источник: PaleoNevs
10-09-2011 Просмотров:11674 Новости Микробиологии Антоненко Андрей
Гусеницы непарного шелкопряда, поражённые бакуловирусом, перестают линять и спускаться для этого на землю, умирая высоко на деревьях. Такое поведение выгодно вирусу, поскольку позволяет заразить бóльшую площадь, чем если бы его...
16-07-2012 Просмотров:12411 Новости Экологии Антоненко Андрей
Лемуры — самые уязвимые млекопитающие на Земле, утверждают специалисты Международного союза охраны природы (МСОП). На минувшей неделе МСОП организовал конференцию на Мадагаскаре, чтобы обсудить судьбу 103 видов лемуров. Мадагаскар может похвастаться...
05-06-2010 Просмотров:15145 Новости Палеонтологии Антоненко Андрей
О том, что конодонты (conodonts), миниатюрные морские существа, появившиеся на Земле около 500 миллионов лет назад, могут быть первыми ядовитыми животными планеты, впервые задумался профессор Хуберт Шанявский (Hubert Szaniawski) из...
22-12-2015 Просмотров:7334 Новости Экологии Антоненко Андрей
Ученые из Католического университета в Чили восстановили историю тумана в пустыне Атакама, выяснив, что на протяжении последних 3500 лет он только усиливался. Сделать это удалось благодаря изучению растений рода тилландсия,...
12-06-2010 Просмотров:11022 Новости Геологии Антоненко Андрей
Исследование, проведённое геологами под руководством Арно Шуллиа (Arnaud Chulliat) из Парижского института физики Земли, показало, что скорость перемещения северного магнитного полюса нашей планеты достигла рекордного за всё время наблюдений значения. Всё...
Нейробиологи идентифицировали область мозга, которая может отвечать за уникальные человеческие способности, включая речь. Идея о том, что накопленная абстрактная информация ответственна за многие уникальные способности человеческого мозга, обсуждалась на протяжении…
Принято считать, что растения и животные выбрались на сушу всего лишь около 500 млн лет назад, а дотоле Земля была безвидна и пуста, как нынешний Марс. Попытка реконструкции Diskagma buttonii.Однако геолог…
По новым данным, на великое вымирание ушло менее 200 тыс. лет. Оно сопровождалось очень быстрыми изменениями атмосферной концентрации двуокиси углерода. Фото Rae AllenРазличные методы дают примерно одну и ту же дату:…
Семейство: Гоминиды (лат. Hominidae) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Парвотряд: Узконосые обезьяны (Catarrhini) Надсемейство: Человекообразные (Hominoidea) Семейство: Гоминиды (Hominidae) Подсемейство: Гоминины (Homininae) Понгины (Ponginae) Оглавление 1. Общие сведения о…
Птицы появились на много миллионов лет раньше, чем это считалось ранее, заявили палеонтологи университета Бристоля. Они рассчитали время появления первых птиц на основании темпов эволюции ключевых адаптаций этой группы и…
Почти полный ископаемый образец, найденный в Китае в 2002 году, укрепил мысль о том, что обезьяны появились по крайней мере 55 млн лет назад. Впрочем, сие крошечное существо не принадлежит…
Ученые выяснили, что анкилозавры, широко известные благодаря наличию хвостовой булавы, приобрели свое грозное оружие постепенно. Сначала у их предков в хвосте появилась специальная ручка, и лишь много позже к ней…
Насекомые утратили чувствительность к «генетическим тормозам» и превратились в монстров: вместо крыльев у древесных жуков выросли рога и горбы. Umbelligerus peruviensisЭнтомологи и генетики из научных центров США и Франции под…
По результатам раскопок в Танзании группа американских палеонтологов обнаружила общего предка двух групп приматов – обезьян Старого Света (мартышки, бабуины, макаки и др.) и человекообразных, пишут корреспонденты электронной версии журнала…