Слизевик Dictyostelium discoideum с момента своего открытия стал одним из главных модельных объектов в биологии: сначала его использовали при исследовании процессов, имеющих отношение к биологии развития и эволюции многоклеточности, а позже оказалось, что с помощью Dictyostelium discoideum можно изучать ещё и социально-экологические взаимосвязи. Причиной такой научной популярности стал особый образ жизни, который ведёт слизевик. Dictyostelium discoideum питается почвенными бактериями и может долгое время существовать в виде одноклеточных амёб, но когда пищи становится мало, амёбы сливаются друг с другом в крупное многоклеточное образование, в котором происходит дифференциация клеток и образование плодового тела. На нём появляется стебельчатый вырост, на котором сидит сорус с набором спор, и из них позже получаются новые одноклеточные амёбы.
D. discoideum на многоклеточной стадии (фото Carolina Biological). Биологию Dictyostelium discoideum начали изучать в лаборатории, однако лабораторное культивирование было не совсем то (а точнее, совсем не то), к чему слизевик привык на воле, а потому между ним и учёными возникло, скажем так, некоторое недопонимание. В 1998 году исследователи из Университета Райса (США) обнаружили на некоторых диких клонах слизевика бактерии, сидевшие на спороносных органах. Оказалось, что, даже будучи очищенными от бактерий, Dictyostelium discoideum подбирали их снова, причём бактерии были именно теми, какие слизевик употреблял в пищу.
Получалось, что эти почвенные амёбы держали при себе запас пищи, поступая подобно фермерам, разводящим скот. Примерно треть диких клонов оказались такими «фермерами»; что же до лабораторных слизевиков, то они, во-первых, могли быть потомками тех, кто фермерством не увлекался, а во-вторых, условия культивации не обязательно соответствовали намерениям слизевиков иметь при себе запас бактерий.
Статья про амёб-фермеров вышла в 2011 году в Nature, однако история на этом не закончилась. Исследователи заметили, что далеко не все бактерии при слизевиках съедобны (то есть не все годятся в пищу самим слизевикам). Тут же возникло множество вопросов: то ли это бактерии-«попутчики», присоединившиеся к выращиваемым бактериям-«коровам», то ли паразиты, наносящие вред слизевикам, то ли что-то ещё. Выяснилось, что Dictyostelium discoideum с такими несъедобными бактериями росли даже активнее, чем без них. Тогда и родилась идея о том, что эти бактерии нужны слизевикам не для прокорма в трудные времена, а для защиты.
Дальнейшие эксперименты это подтвердили. Во-первых, эти бактерии помогали подавить слизевиков-конкурентов. Не все штаммы Dictyostelium discoideum держат при себе бактерии, но все ими питаются, и те, кто занимается «фермерством», могут просто красть чужих «коров». Несъедобные бактерии, которых держат при себе слизевики-«фермеры», подавляют развитие потенциальных грабителей: под действием каких-то бактериальных биомолекул у слизевиков-«нефермеров» появляется наполовину меньше спор. Во-вторых, по словам исследователей, защитные бактерии ещё как-то сами по себе стимулируют рост приютивших их слизевиков.
В Nature Communications Дебра Брок, Дэвид Келлер и Джоан Страссман, работающие теперь в Вашингтонском университете в Сент-Луисе (США), обсуждают, почему фермерский симбиоз, с одной стороны, оказался таким устойчивым среди слизевиков, а с другой — не распространился на все штаммы D. discoideum.
Когда еды много, «фермеры» уступают «нефермерам», так как первые не съедают всё, что есть, а оставляют часть бактерий «на развод». «Нефермеры» же сметают всё подчистую, а потому могут расти и размножаться интенсивнее. Но избыток еды время от времени заканчивается, и тогда преимущество получают «фермеры», у которых еда есть всегда.
Однако они не имели бы такового, если бы при них не было ещё одних симбионтов — бактерий, в прямом смысле отравляющих жизнь конкурентам-«нефермерам». В противном случае конкуренты бы объедали «фермеров», сведя всё их преимущество на нет.
Источник: КОМПЬЮЛЕНТА
В экспериментах биологов из Университета Райса (США) слизевики Dictyostelium discoideum продемонстрировали фермерские способности.
Плодовые тела Dictyostelium discoideum (фото Scott Solomon) Основную часть времени амёба Dictyostelium discoideum, хорошо изученный модельный организм, проводит в отрыве от своих сородичей, питаясь бактериями. Когда ресурсы истощаются, тысячи организмов собираются в колонии и начинают двигаться по направлению к свету; обнаружив подходящую площадку, колония останавливается и формирует необходимые части плодового тела, из которого высвобождаются споры Dictyostelium discoideum. После этого цикл повторяется снова.
В большинстве лабораторий используются штаммы Dictyostelium discoideum, восходящие к одному клону. Участнице нового исследования Дебре Брок (Debra Brock) повезло, поскольку она могла экспериментировать сразу с несколькими «дикими» клонами — группами генетически идентичных организмов одного вида. При наблюдении за ними г-жа Брок отметила, что компанию спорам в плодовом теле слизевиков иногда составляли бактерии. Заинтересовавшись, биолог аккуратно извлекла содержимое нескольких плодовых тел и перенесла полученные образцы в чашки; через два дня в некоторых чашках действительно появились небольшие колонии бактерий.
Тогда г-жа Брок с помощью антибиотиков избавила амёб от бактерий, а затем поместила Dictyostelium discoideum на заселённый микроорганизмами участок. В результате те клоны, которые привлекли её внимание в начале экспериментов, возобновили «сотрудничество» с бактериями. «Амёбы переносят их, «засевают» среду на новом месте обитания, а потом собирают урожай», — говорит исследовательница.
Такими способностями обладала лишь одна треть всех протестированных «диких» клонов. Опыты показали, что фермерство далеко не всегда становится выгодным занятием: если недостатка пищи — бактерий — не ощущается, выигрывают оставшиеся две трети клонов. Они дают более многочисленное потомство, так как им не нужно ограничивать себя и сохранять часть еды для транспортировки.
В тяжёлые времена выигрышной, напротив, оказывается стратегия «фермеров».
Сравнение двух типов Dictyostelium discoideum также позволило установить, что «фермеры» совершают в среднем более короткие путешествия. «Возможно, здесь есть прямая зависимость, ведь с развитием земледелия человек тоже стал перемещаться на меньшие расстояния, — рассуждает сторонний учёный Майкл Пуругганан (Michael Purugganan) из Нью-Йоркского университета. — Сначала, впрочем, мне хотелось бы понять, дают ли амёбы бактериям возможность развиваться на новом месте. Если «фермеры» не выдерживают необходимую паузу, вся их деятельность сведётся к простому запасанию и переноске пищи».
Полная версия отчёта будет опубликована в журнале Nature.
Источник: КОМПЬЮЛЕНТА
Раньше учёные считали, что у амёб секса нет. Оказалось, что есть, просто его не замечали.
Амёбы в разгар «брачных игр» (фото авторов исследования) Как выглядит амёба, знают все: бесформенный организм с ложноножками, на которых она «ходит». Амёбы — древнейшие эукариоты; считается, что они ведут своё происхождение непосредственно от Адама — общего для всех эукариот предка. До сих пор считалось, что у амёб только бесполое размножение, то есть особь делает копию генома, а затем делится надвое, и каждой из получившихся амёб отходит по одинаковому экземпляру генома.
Как говорят исследователи из Массачусетского университета в Амхерсте (США), «секс» (или, точнее, половой процесс) у амёб просто не замечали, поскольку он не носит, так сказать, ярко выраженного характера. А если признаки полового процесса и наблюдались, то их считали за ошибку, отклонение, только подтверждающее правило. Именно такая точка зрения позволила считать, что все эукариоты произошли от «асексуального» предка, а половой процесс развился уже потом, за миллионы лет эволюции.
Вообще-то половой процесс — это не обязательно визуально захватывающе взаимодействие двух организмов с последующим появлением на свет третьей особи. Именно поэтому понятия «половой процесс» и «половое размножение» не тождественны. Суть и предназначение «секса» в перекомбинации генетического материала — в обновлении состава генов, в повышении генетического разнообразия за счёт новых комбинаций генов. Как это будет происходить у отдельно взятого вида — личное дело самого вида.
У амёб дело обстоит так (в общих чертах!): особь делит весь свой геном на две равные части, которые затем комбинируются в новом организме. Последний может получить части генома как от одной особи, так и от двух разных. При этом у «новичка» будет свой, сугубо индивидуальный набор генов, отличающий его от тех, кто предоставил свои половины генома. Новая особь сможет по-другому реагировать на окружающую среду — а значит, появляются новые пути развития.
Статья учёных, подсматривавших за амёбами, опубликована в журнале Proceedings of the Royal Society B.
У амёб половой процесс идёт не всё время; в некоторых условиях более эффективным оказывается бесполое размножение делением. Однако, как полагают многие учёные, бесполому размножению суждено исчезнуть из живого мира, поскольку у тех, кто его практикует, в геноме накапливаются ошибки и мутации, бесконечно тиражирующиеся в миллионах копий и в итоге становящиеся несовместимыми с жизнью. При половом размножении дефекты в генах «уходят» за счёт перераспределения генетической информации — потомству плохие гены могут просто не достаться.
Новая информация об амёбах лишний раз удостоверяет тотальность и общеобязательность «секса». Который, вероятно, возник вместе с эукариотами.
Источник: КОМПЬЮЛЕНТА
28-05-2013 Просмотров:9983 Новости Ботаники Антоненко Андрей
Исследователи из Университета Альберты (Канада) обнаружили в одном из ледников арктической Канады мох, выживший после 400-летнего пребывания подо льдом. Ледники, которые изучали Кэтрин Ла Фардж и её коллеги, в последнее...
16-03-2015 Просмотров:7990 Новости Нейробиологии Антоненко Андрей
Группа исследователей под руководством профессор Сяочу Чжана (Xiaochu Zhang) из Университета науки и техники в округе Хэфэй (Китай), методом магнитно-резонансной томографии (МРТ) сканировала мозг добровольцев, которые в данный момент были...
10-07-2013 Просмотров:10170 Новости Палеонтологии Антоненко Андрей
Японские палеонтологи обнаружили несколько окаменелостей, принадлежавших хищному меловому динозавру. По предварительным оценкам, этот ящер был одним из самых крупных хищников, населявших нынешние Японские острова. Зуб японского динозавра Японский город Нагасаки, ставший известным...
06-03-2013 Просмотров:11780 Новости Палеонтологии Антоненко Андрей
Палеонтологи нашли крокодилий зуб, застрявший в кости молодого травоядного динозавра. Следовательно, периодически попадая на обед к крокодилам, динозавры не были безраздельными хозяевами Земли. Охота на динозавровОб этом говорится в статье, опубликованной...
11-02-2019 Просмотров:2762 Новости Зоологии Антоненко Андрей
Сотрудник биологического факультета МГУ имени М.В. Ломоносова вместе с коллегой из Европы нашёл и описал новый вид микроскопических рачков в древнем озере на Балканах. Исследователи назвали находку Alona begoniae. Работа была...
Метод наблюдения за антарктическими пингвинами при помощи кольца на ласте снижает выживание и размножение птиц и искажет результаты исследований. Королевские пингвины Кольцевание – общепринятый метод, который применяют орнитологи для изучения поведения…
Живший в меловом периоде небольшой летающий динозавр Microraptor gui хорошо умел ловить рыбу. Похоже, он вообще атаковал все, что шевелится, в своем размерном классе, ведь раньше в желудках микрорапторов уже…
У животных социализация происходит обычно ко взаимной выгоде: индивидуумы собираются вместе, чтобы проще было найти брачного партнёра, чтобы легче было искать пищу или отбиваться от врагов. В этом смысле у…
Однолетний лед в Арктике стал еще на 20−30 сантиметров тоньше, чем в 2009 и 2010 году. Этот вывод сделали ученые на основе измерения льда с самолета и со спутника. АрктикаИсследовательский самолет…
Фанские горыВ этот раз, мы совершим путешествие в мир, открывшийся для европейцев совсем недавно - около ста лет назад. В то время как Семён Дежнев обогнул морем северо-восточную оконечность Азии,…
Защита всех видов, находящихся под угрозой исчезновения, обойдётся миру в $4 млрд в год. К вопросу о биоразнообразии: экспозиция Американского музея естественной истории (фото Dan McKay)Если вам этого мало, то вот…
Почти у всех живых существ есть биологические часы, регулирующие работу организма в зависимости от времени суток, и растения тут не исключение. В конце концов, для кого ещё, как не для…
Охота жужелицы на лягушку Израильские ученые впервые описали, как насекомое охотится на амфибий и поедает их. Агрессивные жужелицы употребляют в пищу пять видов земноводных. Наблюдение биологов из Тель-Авивского университета переворачивает наше привычное…
Американские ученые опровергли сложившееся мнение о взаимосвязи морфологического разнообразия и экологической диверсификации живых существ. По новым данным исследователей Стэнфордского университета, не существует линейной зависимости между количеством жизненных форм и ассортиментом…